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PREFACE 
 
 
 
In lattice theory the two well known equational class of lattices 
are the distributive lattices and the modular lattices. All 
distributive lattices are modular however a modular lattice in 
general is not distributive.  

In this book, new classes of lattices called supermodular 
lattices and semi-supermodular lattices are introduced and 
characterized as follows: 

A subdirectly irreducible supermodular lattice is isomorphic 
to the two element chain lattice C2 or the five element modular 
lattice M3. 

A lattice L is supermodular if and only if L is a subdirect 
union of a two element chain C2 and the five element modular 
lattice M3. 

A modular lattice L is n-semi-supermodular if and only if 
there does not exist a set of (n + 1) elements a1, a2, …, an in L 
such that a + a1 = a + a2 = … = a + an > a with a > aiaj (i not 
equal j); i, j = 1, 2, …, n.  

A modular lattice L is n-semi-supermodular if and only if it 
does not contain a sublattice whose homomorphic images is 

isomorphic to 
1 2 ri 2,i 2,...,i 2M     or 

1 2 ri 2,i 2,...,i 2M   


 with i1 + i2 + … + 

ir = n – 1; i, j  1. 
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We define the concept of Smarandache lattices and GB-
algebraic structures are characterized in chapters six and seven 
respectively. 

This book has seven chapters. Chapter one is introductory in 
nature. A simple modular lattice of finite length is introduced 
and characterized in chapter three. In chapter four the notion of 
supermodular lattices is introduced and characterized and 
chapter five introduces the notion of n-semi-supermodular 
lattices and characterizes them. 

It is pertinent to keep on record part of this book is the 
second authors Ph.D thesis done under the able guidance of the 
first author Late Professor Iqbalunnisa. Infact the last two 
authors where planning for a lattice theory book a year back but 
due to other constraints we could not achieve it. Now we with a 
heavy heart have made this possible. 

We thank Dr. K.Kandasamy for proof reading and being 
extremely supportive. 

 
IQBAL UNNISA 

W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 

  



 
 
 
 
Chapter One 
 
 

 
 
PRELIMINARIES 
 
 
 
In this chapter we recall some definitions and results which are 
made use of throughout this book. The symbols , , +, . will 
denote inclusion, noninclusion, sum (least upper bound) and 
product (greater lower bound) in any lattice L; while the 
symbols,  , , , ,  will refer to set inclusion, union (set 
sum), intersection (set product), membership, and non-
membership respectively.  Small letters a, b, … will denote 
elements of the lattice and greek letters, , , … will stand for 
congruences on the lattice.    
 

A binary relation  on L is said to be an equivalence 
relation if it satisfies. 

 
 (i) x  x () (reflexive) 
 (ii) x  y ()  y  x () symmetric 

(iii) x  y (); y  x ()  x  z () (transitive) 
If it further satisfies the substitution property. 

(iv) x  x (); y  y ()  x + y  x + y () then it is 
called an additive congruence.  An equivalence relation 
which has the substitution property. 

(v) x  x (); y  y ()  xy  xy () is called a 
multiplicative congruence.  If a binary relation satisfies 
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the conditions (1) to (v) then it is said to be a lattice 
congruence or merely a congruence on L. 

 
Result 1.1:  If a = b () in a lattice L then x = y () for all x, y 
in L such that ab  x, y  a + b [2]. 
 
 
 Let a, b in L such that a  b.  Then the set of all elements x 
in L such that a  x  b is called the interval (a, b).  If a = b(a, b) 
is called a prime interval.  If a = b (a, b) is called a trivial 
interval. 
 
 If a  b () (a, b in L; a  b) then x  y () for all x, y in L 
such that a  x, y  b (by result 1.1) and  is said to annul the 
interval (a, b). 
 
 Intervals of the form (x, x+y) and (xy, y) are said to be 
perspective intervals.  We say 
 

(xy, y)   (x, x+y) or equivalently (x, x+y)   (xy, y). 
 
 If I = (a, b) is an interval of L then the interval (a+x, b+x) 
for any x in L is called an additive translate of the interval I and 
is written as I+x; and the interval (ax, bx) for any x in L is 
called a multiplicative translate of the interval I and is written as 
Ix. 
 
 An interval J is the lattice translate of an interval I of L if 
elements x1, x2, …, xn can be found such that  
 
 J  = ((((I + x1)x2) + x3)…) xn or  
 
 J  = ((((I.x1) + x2) x3)…) xn,  
 
where n in finite and +, . occur alternatively. 
 
Result 1.2:  Lattice translation is a transitive relation. 
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Result 1.3:  Any lattice translate of an interval I of a distributive 
lattice L can be written as (I + y)x or (I.x) + y for some x, y in L 
[10]. 
 
Result 1.4: Any subinterval J of an interval I is a lattice 
translate of I [10]. 
 
Result 1.5:  Any conqruence  on L which annuls I annuls all 
lattice translates of I [10]. 
 
Result 1.6: Any non-null set S in L is a congruence class under 
some congruence relation on L if any only if 
 

(i) S is a convex sublattice and 
(ii) Lattice translate of intervals in S lie wholly within S or 

outside S [10]. 
 
DEFINITION 1.1:   The smallest congruence which annuls a set 
S of a lattice L is called the congruence generated by the set S. 
 
Result 1.7:  Let I be an interval of a lattice L.  I the congruence 
generated by I in L.  x  y (I) if and only if there exists a finite 
set of elements x+y = x0 > x1 > x2 … . xn = xy such that (xi, xi+1) 
is a lattice translate of the interval I [10]. 
 
Result 1.8:  The lattice translate of a prime interval in a 
modular lattice can only be a prime interval [10]. 
 
Result 1.9:  Let L be a modular lattice.  I and J intervals of L 
such that I is a lattice translate of J then I is projective with a 
subinterval of J [10]. 
 
DEFINITION 1.2:  The modular lattice consisting of n+2 
elements (n  3), a, x1, …, xn, b satisfying xi + xj = a  (i  j, i, j = 
1, 2, …, n), xi xj = b for all i, j = 1, 2, …, n; i  n is denoted by 
Mn. The modular lattice consisting of the elements a, xi, x2, …, 
xn, b, y1, …, ym–1, c satisfying 
 
  xi + xj =  a for all i  j, i, j = 1, 2, …, n 
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  xixj = b for all i, n  j, i, j = 1, 2, …, n 
b+yi = xn for all i = 1, 2, …, m–1 
yi + yj = xn for all i  j, i, j = 1, 2, …, m–1 
byi = c for all i=1, 2, …, m–1 
yiyj = c for all i, j = 1, 2, …, m–1 is denoted by Mn,m. 

 
 We denote 

1 2 kn ,n ,...,nM (nk  3) in a similar fashion. 

 

 We define m,n,rM̂  to be the modular lattice consisting of the 

elements a, x1, …, xn, b, y1, …, ym–1, c, z1, z2, …, zr–1, d, cd such 
that a, x1, …, xn, b form a lattice isomorphic to Mn. x1, b, y1, …, 
ym–1, c form a lattice isomorphic to Mm; x2, b, z1, …, zr–1, d form 

a lattice isomorphic to Mr. We extend definition to n,m,r ,sM̂  in 

two ways.   
 

First n,m,r ,sM̂  is got by taking elements a, x1, x2, …, b, y1, …, 

ym–1, b1, z1, …, zr–1, b2, u1, …, us–1, b3, b1 b2, b1b3, b3b1, b1b2b3 
such that a, x1, x2, …, xn, b form a lattice isomorphic to Mn; x1, 
b, y1, …, ym–1, b1 form a lattice isomorphic to Mm,  x2, b, z1, …, 
zr–1, b2 form a lattice isomorphic to Mr; x3, b, u1, …, us–1, b3  
form a lattice isomorphic to Ms. 
 

 In the second; we define m,n ,r ,sM̂  by taking the elements   

a, x1, …, xn, b, y1, …, ym–1, b1, z1, z2, …, zr–1, b2, u1, …, us–1, 
b3 b1b2, b2b3 such that a, x1, …, xn, b form a sublattice 
isomorphic to Mn, 

 
x1, b, y1, …, ym–1, b1, form a sublattice isomorphic to Mm,  
 
x2, b, z1, z2, …, zr–1, b2, form a sublattice isomorphic to Mr,  
 
y1, b1, u1, …, us–1, b3 form a sublattice isomorphic to Ms.  
 

m,n,r ,sM


 … is defined dually. 
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m,n,rM̂  Figure 1.1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n,m,r ,sM̂   Figure 1.2 
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Figure 1.3 
 
 These are illustrated in figures 1.1, 1.2 and 1.3. 
 
DEFINITION 1.3:  Let  be a congruence on a lattice L.  is 
called separable if and only if for every pair of comparable 
elements a < b there exist a finite sequence of elements. 

a = x0 < x1 < … < xn = b 
such that either (xi–1, xi) is annulled by  or (xi–1, xi) consist of 
single point congruence classes under . 
 
THEOREM [4]: Let L be a modular lattice and let C0 and CI be 
chains in L. The sublattice of L generated by C0 and CI is 
distributive. 
 
THEOREM [6, 7, 13]: Any subdirectly irreducible modular 
lattice of length n  3 has a sublattice whose homomorphic 
image is isomorphic to M3.3. 
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Chapter Two 
 
 

 
 
SIMPLE MODULAR LATTICES  
OF FINITE LENGTH 
 
 
 
In the first chapter we defined the notions of additive translate, 
multiplicative translate and lattice translate of an interval.  We 
introduce in this chapter, the notion of a distributive translate of 
an interval and study the properties of distributive translates of 
prime intervals in a modular lattice.  This study leads us to a 
characterization of simple modular lattices of finite length. 
 
 Throughout this chapter L will denote a modular lattice, 
unless otherwise stated. 
 
DEFINITION 2.1: A prime interval I of L is said to be 
distributive if for all nontrivial intervals J = (I+x)y there exist p, 
q  L with J = Ip + q for all the nontrivial intervals J1 = Ix1 + 
y1 there exist p1, q1 in L with J1 = (1 + p1)q1. 
 
Lemma 2.1:  Any prime interval of a distributive lattice is 
distributive. 
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Proof:  Follows as J = (I+x) y implies J = Iy + xy and J1 = Ix1 + 
y1 implies J1 = (I+y1) (x1 + y1). 
 
Lemma 2.2:   In a distributive lattice if a nontrivial interval J = 
(I+x)y, then Iy is nontrivial. 
 
Proof:  Now J = Iy + xy and if Iy were trivial, so would be J. 
 
DEFINITION 2.2:  If I = (a, b) and J = (c, d) then the intervals 
(a + c, b + d) and (ac, bd) are denoted by I + J and IJ 
respectively. 
 
Lemma 2.3:   If a nontrivial interval J = (I + x)y then I + J 
cannot be trivial. 
 
Proof:  Let I = (a, b) and J = (c, d) then 
  c = (a + x)y; d = (b + x)y. 
 
Also a+c = a + (a+x)y = (a+x) (a+y) and 

  b+d = b+(b+x)y = (b+x) (b+y).   
 
Now if I + J is trivial then a + c = b + d that is  
(a+x) (a+y) = (b+x) (b+y) which means 

 
 a + x  = (a + x) + (a + x) (a + y) 
   = (a + x) + (b + x) (b + y) 
   = (b + x) (a + x + b + y) 
   = b + x. 
 
So (a + x)y = (b+x)y that is J is trivial; a contradiction. 
 Dually we have 
 
Lemma 2.4:  If any nontrivial J = Ix + y then IJ cannot be 
trivial. 
 
Lemma 2.5:  If I = (a, b) is a prime interval and J = (c, d) =  
(I + x)y then I is distributive if and only if Iy is nontrivial and  
J = Iy + c.  (Equivalently J = Id + c). 
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Proof:  Under the hypothesis of the lemma let I = (a, b) be 
distributive then J = Ip + q for some p, q in L, then by Lemma 
2.4  IJ cannot be trivial. 
 
 Now IJ  = (a  (a+x)y, b(b+x)y) 
   = (ay, by) 
   = Iy. 
Hence Iy is nontrivial. 
 
 Conversely let Iy be nontrivial, then as the lattice L is 
modular and Iy is a lattice translate of a prime interval, it can 
only be a prime interval as shown in figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
      Figure 2.1 
 
 Iy  = (ay, by) 
  =  (a(a+x)y, b(b+x)y) 
  =  (ac, ad). 
 
 Hence ac is covered by bd (Iy is a prime interval).  Now L 
is a modular lattice of finite length hence we can define a 
dimension function d which satisfies d(a+b) + d(ab) = d(a) + 
d(b).  Thus we have 
 d(a+c) + d(ac)  =  d(a) + d(c) 
 d(b+d) + d(bd)  =  d(b) + d(d). 
 
Subtracting the former from the latter we get 
 [d(b+d) – d(a+c) + [d(bd) – d(ac)] 
 = [d(b) – d(a)] + [d(d) – d(c)] 







 c 

ac = bc = ad 

a 

a+c 

bd 





 d b 

b+c = b+d 
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 = 1 + 1  (as b covers a and d covers c). 
 = 2. 
 
 Now d(bd) – d(ac) = 1, implies d(b+d) – d(a+c) = 1 that is b 
+ d covers  a + c.  Now a + c  b + c  c  b + d and a + c is 
covered by  b + d. 
 
 Either b + c = a + c or b + c = b + d. 
 
 If a + c = b + c then a + c > b 

 a + (a + x)y > b 
 (a + x) (a + y) > b 
 (a + x) > (a + x) (a + y) > b 
 a + x > b + x 
 a + x = b + x 
 (a + x)y = (b +x)y 
 J is trivial.  A contradiction.  Thus b + c = b  + d. 

 
Now  ac  bc  bd and ac is covered by bd.  So bc = ac or 

bc = bd. bc  bd.  For if b + c = b + d, as  c < d and the lattice is 
modular, we have bc = ac.   

 
Next ad = a (b + x)y = ay = ac.  That is ad = ac. 
 
Now,  

  abd   = bad = bac = bbc = bc = ac 
ac = ad = abd = bc 

that is abd = bcd. 
 

So ac = bcd which can be written as a c c = b d c.  Now  
ac  bd.  So ac + c  bd + c (L is modular) that is c  c + bd.  So 
c  bd + c  d.  Also c is covered by d so bd + c = d that is J = 
Id + c = Iy + c. 
 

Dually we have 
 
Lemma 2.6:   If I = (a, c) is a prime interval and J = (c, d) = Ix 
+ y then J is a distributive lattice translate of I if and only if  
I + y is nontrivial and J = (I + y)d.  Equivalently J = (I + c)d. 
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Lemma 2.7:   If a is covered by  b  and c is covered by d with  
b  c then (c, d)   ((a + x)y, (b + x)y) for any x, y  L. 
 
Proof:   If (c, d)  = ((a + x)y, (b + x)y) and a is covered by  b 
and b   c and c is covered by d then c = (a + x)y. 
 
 c + x  =   (a + x)y + x 
   =   (a + x) (x + y) 
 (c+x)y  =  (a + x)y = c. 
 
But (b + x)y lies between (a + x)y and (c+x)y as a < b  c, so 
equals c, a contradiction, a c  d and (b + x)y = d. 
 
Lemma 2.8:  Let  a is covered by b  and c is covered by d with 
d  a then (c, d)  ((a + x)y, (b + x)y) for any x, y in L. 
 
Proof:   If d = (b + x)y then d + x = (b + x)y + x 
 = (b + x) (x + y) implies 
 (d + x)y   = (b + x)y = d. 
 Thus d = (d + x)y < (a + x)y < (b + x)y = d implies 
 (a + x)y = d = c; a contradiction.  
 
Corollary 2.1:  If there exists intervals  I = (a, b), J = (c, d) with 
a < b  c < d then neither can be a distributive translate of the 
other in any general lattice. 
 
Corollary 2.2:   If a < b  c < d in a distributive lattice then 
neither J = (a, b) nor J = (c, d) can be a lattice translate of the 
other. 
 
DEFINITION 2.3:  A prime interval J = (c, d) of a modular 
lattice L is called a distributive lattice translate of a prime 
interval I = (a, b) if and only if J can be expressed as (I + c)d or 
equivalently J can be expressed as Id + c. 
 
Lemma 2.9:   If (I + x)y = J with IJ = Iy  trivial then I + J 
contains a five element modular sublattice and is of length 2. 
 



20 Supermodular Lattices  
  
 
 
 
 

Proof:   Length (I + J) + Length (IJ) = 2.  As Length IJ = 0 
(given); Length (I + J) = 2. 
 
 Let I = (a, b) and J = (c, d),  IJ = 0 implies ac = bd.  Also  
ac  bc  bd and ac  ad  bd.  So ac = bc and ad = bd.  Now L 
is modular.  Therefore a + c  b + c and a + d  b + d.   Also  
ac = ad and bc = bd.  Again as L is modular a + c  a + d and  
b + c  b + d. 
 
 Next b + c  a + d.  For if b + c = a + d then b + c + a + d = 
a + d then is b + d = a + d; a contradiction. 
 
 But a + c  is covered by b + c  and b + c is covered by b + d 
and a + c is covered by  a + d and a + d is covered by b + d. 
 
 Also a + c = (a + x) (a + y) and b + c = (b + x) (b + y).  Let 
p = (a + x) (b + y) as b + d = (b + x) (b + y)  either (p, b + d) is 
trivial or p is covered by b + d.  If p = b + d, then (a + x) (b + y) 
= (b + x) (b + y).  So (a + x) (b + y)y = (b + x) (b + y) y  will 
imply (a + x)y = (b + x)y that is c = d; a contradiction. 
 
 So (p, b + d) is nontrivial.  Thus p is covered by b + d.  Now 
b + d covers b + c and a + d.  We assert neither b + c = p nor a + 
d = p.  For if b + c = p then (b + c, b + d) = (I + x) (b + d)  and a 
is covered by b  b + c and b + c is covered by b + d; a 
contradiction in view of Lemma 2.7. 
 
 If a + d = p  then (a + d,  b + d) = [J + a + x)] (b + d) and  
c is covered by d  a + d and a + d is covered by b + d; a 
contradiction in view of Lemma 2.8. 
 
 Thus a + c, b + c, p, a + d, b + d is isomorphic to the five 
element modular lattice of length 2 contained in I + J (cf.  figure 
2.2) 
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Figure 2.2 
 
Dually we have 
 
Lemma 2.10:    If Ix + y = J with I + J = I + y trivial then IJ 
contains a five element modular sublattice and is of length 2. 
 
Lemma 2.11:  Let L be a modular lattice of finite length.  Let 
C:0 = x0 < x1 < x2 < … < xn = 1 be a maximal chain connecting 
0 and 1.  Let I = (a, b)   (a is covered by b) be an arbitrary  
prime interval of L then I is a distributive lattice translate of a 
unique prime interval of C. 
 
Proof:   Now I = ((0, 1) + a) b  as (x0 + a)b = a and (xn + a)b = 
b.  Next a  (xi + a) b  b for all xi.  Given a is covered by  b; 
either  (x1 + a) b = a or b; for all xi. 
 
 Let k be the largest i for which (xk + a)b = a; then  
(xk+1 + a)b = b. 
 
 So I = ((xk, xk+1) + a)b. 
 
 Now as L is modular and a is covered by b we have I = ((xk, 
xk+1) b) + a also. 
 
 Thus I = (a, b) is a distributive lattice translate of (xk, xk+1). 
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 Further this (xk, xk+1) is unique.  For if I is a distributive 
lattice translate of another (xj, xj+1) of C then 
 I = (a, b) = ((xj, xj+1) + a) b by Lemmas 2.5 and 2.6. 
 
 Now as k and j are comparable without loss in generality we 
can assume k > j, then we see that (xj + a) b = (xj+1 + a)b = a; a 
contradiction.  Thus k = j and so the uniqueness of the interval 
is established. 
 
Remark:  The modularity of the lattice is a necessary condition 
in Lemma 2.11. 
 
Proof:  Consider the lattice of figure 2.3    
 
 
 
 
 
 
 
 
 
 

Figure 2.3 
 

and the chain C : 0 = x0 < x1 < x2 = 1.  Let I = (a, b) be the prime 
interval.  Now I is not a distributive lattice translate of any 
interval in C. 
 
 For ((x0, x1) + a)b  =   (a, b)  (x0, x1)b + a 
 ((x1, x2)b)+a   = (a, b)  [(x1, x2) + a]b. 
 
 Let L be a modular lattice of length n and C : 0 = x0 < x1 <  
… < xn = 1 be a maximal chain connecting 0 to 1.  Let P denote 
the totality of all prime intervals of L.  Partition P with respect 
to C into n classes P1, P2, …, Pn by the following procedure. 
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x0=0

x1 

x2=1
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 Pi = the set of all intervals P which are distributive lattice 
translates of (xi–1, xi). 
 
 Now it follows as a consequence of Lemma 2.11 above that 
any prime interval of L belongs to one and only one class Pi. 
 
Lemma 2.12:  If L is a distributive lattice then for each interval 
Ji = (xi–1, xi) of C, 

iJ  annuls just those prime intervals of L 

which belong to Pi and no more. 
 
Proof:  Follows as any lattice translate of any prime interval Ji 
of L is a distributive lattice translate of Ji. 
 
Lemma 2.13:  If Ji is a distributive interval of a modular lattice 
L then 

iJ  annuls just those prime intervals of L which belong 

to Pi and no more. 
 
Proof:   Follows as in the case of Lemma 2.12. 
 
Lemma 2.14:  If a prime interval I = (a, b) of L is a distributive 
lattice translate of some interval Ji = (xi–1, xi) of C then I is a 
lattice translate of Ji considered as intervals in the distributive 
sublattice generated by I and C. 
 
Proof:  As in this case 
 
 I  = ((xi–1, xi) + a)b 
  = ((xi–1, xi)b) + a 
 
and all the elements involved belong to the sublattice generated 
by I and C. 
 
Lemma 2.15:  If I = (a, b), I1 = (a1, b1) are prime intervals of L 
such that a  is covered by b and b  a1 is covered by b1 then the 
classes to which I and I1 belong in the partition of P with respect 
to any arbitrary chain C are distinct. 
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Proof:  Let D denote the chain of L consisting of the intervals I 
and I1; and let S be the distributive sublattice generated by C 
and D.  Let P1, P2, …, Pn be the classes corresponding to the 
partitioning of the prime intervals of L with respect to the chain 
C; and 1 2 nP ,P ,...,P    be the classes corresponding to the 
partitioning of the prime intervals of S with respect to the  
chain C. 
 
 In view of Lemma 2.14  observe that the interval I belongs 
to Pi (i.e., the class containing (xi–1, xi)) if and only if I belongs 
to iP  (i.e.,  the class (xi–1, xi)). 
 
 Now as S is a distributive lattice, I and I1 cannot be lattice 
translates of each other in S; hence will belong to different 
classes under the partitioning of S with respect to C which in 
turn gives the required result. 
 
Lemma 2.16:  If C1 is any other maximal chain connecting 0 to 
1 of L then C1 has exactly n prime intervals each of them belong 
to the classes P1, P2, …, Pn, taken in some order. 
 
Proof:  Follows from Lemma 2.15.  
 
Lemma 2.17:  If a lattice translate K = (Ji + x)y or (Jix + y) of Ji 
is non-distributive then K belongs to a class Pj different from Pi.  
Further the prime intervals of the five element sublattice K + Ji 
(KJi) belong either Pi or to Pj. 
 
Proof:   Lemma 2.9  and Lemma 2.10 assert the existence of the 
five element sublattice K + Ji (and KJi) respectively consider 
any maximal chain C1 of L connecting 0 and 1 which passes 
through the end points of K + Ji (or KJi).  From the previous 
lemma it follows that the prime intervals of C except those 
within K+Ji (or KJi) belong to (n–2) classes of the partitioning 
of L with respect to C.  Let the two classes which are omitted be 
Pi and Pj.  These are the classes to which the prime intervals in 
K + Ji (or KJi) belong irrespective of the element of K + Ji (or 
KJi) occurring in the chain C1. 
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Lemma 2.18:  If the lattice translates of (xi–1, xi) and (xj–1, xj) of 
the previous lemma are contained completely within the classes 
Pi and Pj then 

i 1 i(x ,x )
  annuals just the prime intervals belonging 

to these two classes. 
 
Proof:  Follows as 

i 1 i(x ,x )
  being the smallest congruence 

annulling (xi–1, xi) annuls just those intervals which can be 
written as a finite sum of lattice translates of (xi–1, xi). 
 
 Let K1 be a non-distributive lattice translate of (xi–1, xi) or 
(xj–1, xj) lying outside the classes Pi and Pj, then the classes Pi 
and Pu (or Pj and Pu) meet in a five element modular lattice 
(where Pu denotes the class to which K1 belongs).  Thus to pass 
from one of the classes Pi to another class Pk one has to pass 
through a five element modular lattice. 
 
 Hence we have 
 
THEOREM 2.1:  A modular lattice L of finite length n is simple 
if and only if the partition of L with respect to some arbitrary 
chain C satisfies property (). 
 
 “Any two of the classes P1, P2, …, Pn in the partitioning can 
be linked to one another by a sequence such that any two 
consecutive classes of the sequence meet at a five element 
modular lattice”. 
 
Proof:  Let C : 0 = y0 < y1 < … < yn = 1 be the chain.  If L is 
simple then every prime interval of L is a lattice translate of any 
other prime interval.  Now the prime interval J = (y1, y2) of L is 
a lattice translate of I = (y0, y1).  Let 
 

J = (I + x1)x2) + x3…) + x2r 
 
be a  representation of J as a lattice translate of I.  Let this 
representation be one of those which cannot be further reduced; 
that is (I + x1)x2 is a nondistributive translate of I, (I + x1)x2 + x3 
is a nondistributive translate of 
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I + x1 … ((I + x1)x2 + … + x2i–2) + x2i–1 
 
is a nondistributive translate of 
 
 (I + x1) x2 + x3 …) + x2i–3 … etc. 
 
Let I, I+x1  

1
P  = P1 

 
((1 +x1) x2, (1+x1) x2 + x3  

2
P  

((1 + x1) x2+x3)x4, ((I+x1)x2 + x3)x4 + x5  
3

P  

… 
J 

r
P  = P2. 

 
I  P1 = 

1
P , 

2
P , …, 

r
P = P2; J  P2 is the sequence by 

which these are linked.  Similarly any Pi and Pj would be linked. 
 

Conversely if a modular lattice L satisfies property () then 
any two of the prime intervals of L are lattice translates of each 
other and hence L is simple. 
 
Remark:   Start with any class P1.  Now this class P1 should be 
linked to some class 

2
P  so we should pass through a five 

element modular lattice.  If those two are not further linked we 
would set a congruence on L just annulling these two classes 
and hence L will not be simple.  So in the class of a simple 
lattice, atleast one of P1 or 

2
P  should be linked to another class 

3
P  and this will give another five element modular lattice etc.  

This process will continue until all the classes are exhausted and 
so, we would atleast have (n–1) such five element modular 
lattices existing in L. 
 
 Conversely if we have a modular lattice L containing (n–1) 
such five element modular lattice in such a way that these link 
any two of the classes Pi with respect to some chain C then L is 
simple. 
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Corollary 2.3:  L is a modular lattice containing a maximal 
chain C such that any two of the classes of the partition of P 
with respect to C satisfy property () then the classes of the 
partition of P with respect to any other chain C1 also satisfy 
property (). 
 
Proof:  This follows as the first condition implies the simplicity 
of the lattice and the second is obtained as the choice of the 
chain C in the previous theorem is arbitrary. 
 
Corollary 2.4:  If L is a simple modular lattice then every class 
Pi has atleast one direct link with some other class Pj. 
 
Corollary 2.5:  Let L is a simple modular lattice of length n 
with n  3, then there exists atleast one class Pi which has direct 
links with two or more classes. 
 
THEOREM 2.2: A simple modular lattice of length n  3 
contains a sublattice isomorphic to the lattice of figure 2.4 
(M3,3) or figure 2.5. 
 
 
 
 
 
 
 
 
 
 

Figure 2.4   M3,3 
 

having a homomorphic image isomorphic to M3, 3. 
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Figure 2.5    M3,3 
 

Proof:  Let Pk be the class mentioned in corollary 2.5 which has 
direct links with two or more classes then the two terms which 
the class Pk takes would give sublattices isomorphic to M3,3 or 
to figure 2.5, that is a sublattice with a homomorphic image 
isomorphic to the lattice M3,3. 
 
Corollary 2.6:  L is a simple modular lattice of length n, with n 
 4 then either there are (n–2) different sublattices of the type 
mentioned in the above lemma or there exists a sublattice in L 
isomorphic to the lattice of figure 2.6, figure 2.7, figure 2.8 or 
figure 2.9, that is a sublattice with a homomorphic image 
isomorphic to the lattice M3,3,3. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6  M3,3,3 
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Figure 2.7   M3,3,3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8     M3,3,3 
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Figure 2.9   M3,3,3 





















 















 
 
 
 
 
Chapter Three 
 
 

 
 
SUPERMODULAR LATTICES 
 
 
 

Distributive lattices and modular lattices are the two well 
known equational classes of lattices.  In this chapter we 
introduce another equational class of lattices - called the 
supermodular lattices.  This equational class lies between the 
equational class of modular lattices and the equational class of 
distributive lattices. 

 
 It is well known that a modular lattice is nondistributive if 
and only if it contains a sublattice isomorphic to M3. In a similar 
fashion, we prove that a modular lattice is nonsupermodular if 
and only if it contains a sublattice whose homomorphic image is 
isomorphic to M4 or M3,3. 
 
 Further we obtain (cf. Theorem 3.6).  A super modular 
lattice is isomorphic to a subdirect union of copies of C2 and 
M3. 
 
DEFINITION 3.1: A lattice L is said to be supermodular if it 
satisfies the following identity 
 
 (a + b) (a + c) (a + d) = a + bc (a + d) + cd (a + b) +  
bd (a + c) for all a, b, c, d in L. 
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Lemma 3.1:   Every supermodular lattice is modular. 
 
Proof:  Put c = d 

(a+b) (a + c)  = a + bc + c (a + b) + bc 
  = a + c(a + b) 

 
is true for all a, b, c in L, which can easily be recognized as the 
modular law. 
 
Lemma 3.2:  Every modular lattice is not necessarily 
supermodular. 
 
Proof:  By an example. 
 

Consider the elements a, b, c, d as marked in the lattice M4 
of figure 3.1 then 
 

 

 

 

Figure 3.1   M4 
 

(a + b) (a + c) (a + d) = 1 
a + bc (a + d) + cd (a + b) + db (a + c) = a. 

 
Hence it is not supermodular. 

 
Lemma 3.3:  Every distributive lattice is supermodular. 
 
Proof:  If L is distributive then 
  L.H.S.  = R. H. S.  = a + bcd. 
 
Lemma 3.4:   In a modular lattice L if a, b, c, d are 4 elements 
such that any two are comparable then this set of 4 elements 
satisfies the supermodular law. 







 c 

0 

a 

1 

b  c 
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Proof:  Let a > b. 
(a + b) (a + c) (a + d) =  a  a + bc (a + d) + bd (a + c) +  

cd (a + b)  a. 
So the law holds. 
 
Let a < b 

L.H.S.  = b (a + c) (a + d) = b (a + c (a + d)) 
= a + bc (a + d). 

So a + bc (a + d)  R.H.S.  a + bc (a + d). 
So L.H.S.  = R.H.S. 
 

Let b > c 
(a + b) (a + c) (a + d) = (a + c) (a + d) 
= a + c (a + d) 
= a + bc (a + d). 

 
So 
 L.H.S. = a + bc (a + d)  R.H.S. 
  a + bc (a + d). 

So the law is satisfied. 
 
Lemma 3.5:  Every supermodular lattice is not necessarily 
distributive. 
 
Proof:  By an example. 
The lattice of figure 3.2  is supermodular but not distributive. 
 

 

 

  

         Figure 3.2 

 Supermodularity of L can easily be checked as L is a 
modular lattice and does not contain elements a, b, c, d such that 
any two of these are mutually incomparable (cf. Lemma 3.4). 
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Lemma 3.6:  The lattices M4 and M3,3 are non-supermodular. 
 
Proof:  M4 is already shown to be non supermodular in  
Lemma 3.2. 
 
 M3,3 is not supermodular.  For consider the elements a, b, c, 
d as shown in M3,3 of figure 3.3 then (a + b) (a + c) (a + d) = 1 
while a + bc (a + d) + cd (a + b) + db (a + c) = a. 
 

 

 

 

 

Figure 3.3  M3,3 

Lemma 3.7: Direct sum of supermodular lattices is 
supermodular. 
 
Proof:  Straight forward. 
 
Lemma 3.8:  Any sublattice of a supermodular lattice is 
supermodular. 
 
Proof:  Obvious. 
 
Lemma 3.9:  Any homorphic image of a supermodular lattice is 
supermodular. 
 
Proof:  Follows as the supermodular identity is a finite identity. 
 
THEOREM 3.1:  The class of supermodular lattices is an 
equational class of lattices lying between the equational class of 
modular lattices and the equational class of distributive lattices. 
 















1 

a b 



c 

0 

d 
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Proof:  Follows from Lemma 3.1, Lemma 3.3, Lemma 3.7, 
Lemma 3.8 and Lemma 3.9. 
 
Lemma 3.10:  If L is a supermodular lattice then no 
homomorphic image of L is isomorphic to M4 and M3,3. 
 
Lemma 3.11:  If L is a lattice which is not supermodular then L 
contains a set of 4 elements a, b1, c1, d1 such that  
(a + b1) (a + c1) (a + d1) > a while a > b1 c1 (a + d1),  
c1d1 (a + b1), d1b1 (a + c1) holds. 
 
 (b1, c1, d1) being distinct b1  c1 otherwise b1 = b1c1 and  
a + b1 = a + b1c1, a contradiction as it will imply equality of  
(a + b1) (a + c1) (a + d1) = a. 
 
Proof:  Let L be a modular lattice which is not supermodular.  
As L is not supermodular there exist elements p, x, y, z such 
that 
 
(p + x) (p + y) (p + z) 


  p + xy (p + z) + yz (p + x) +  zx (p+y). 

 
 Put a = p + xy (p + z) + yz (p + x) + xz (p + y) 
  b1 = x 
  c1 = y 
  d1 = z. 
 
 Then a + b1 = p + xy (p + z) + yz (p + x) + xz (p + y) + x 
  = p + x + yz (p + x) 
  = p + x. 
 
 Similarly a + c1 = p + y and a + d1 = p + z. 
 So (a + b1) (a + c1) (a + d1) 


  a. 

 
Lemma 3.12:   If L is a modular lattice which is not 
supermodular then L contains a set of 4 distinct elements a, b, c, 
d such that 
  a + b  = a + c = a + d 


  a. 

 Further a > bc, cd, db holds. 
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Proof:  As L is not supermodular, by Lemma 3.11 we can assert 
the existence of a set of 4 elements a1, b1, c1, d1 in L such that 
 (a + b1) (a + c1) (a + d1) 


  a 

and 
 a > b1c1 (a + d1) 
 c1d1 (a + d1) 
and 
 b1d1 (a + c1) 
 
Put  
 b = b1 (a + c1) (a + d1) 
 c = c1 (a + b1) (a + d1) 
 d = d1 (a + b1) (a + c1) 
then 
 a + b = a + b1 (a + c1) (a + d1) 
 = (a + b1) (a + c1) (a + d1) 
 
as (a + c1) (a + d1) > a and L is modular. 
 
Similarly 
 a + c = (a + b1) (a + c1) (a + d1) 
and 
 a + d = (a + b1) (a + c1) (a + d1). 
 
Therefore 
 a + b = a + c + a + d 


 a. 

Now as 
 bc = b1 (a + c1) (a + d1) c1 (a + b1) (a + d1) 
 = b1c1 (a + d1). 
 
 We get a > bc.  Similarly a > cd and db. 
 
Lemma 3.13:  If L is a modular lattice which is non 
supermodular then for the set of 4 elements a, b, c, d of Lemma 
3.12, all the three lattices generated by (a, b, c), (a, c, d) and  
(a, d, b) are non-distributive. 
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Proof:  Let if possible the lattice generated by (a, b, c) be a 
distributive lattice; then a + b = (a + b) (a + c) = a + bc = a  
(as a > bc); a contradiction.  Similarly we can prove the 
nondistributive nature of the other two lattices. 
 
Lemma 3.14:  If L is a modular lattice which is non 
supermodular then for the set of 4 elements a, b, c, d of Lemma 
3.13, the sublattices as shown in figures 3.4, 3.5, and 3.6 have 
homomorphic images isomorphic to the lattice M3,3 of figure 
3.3. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.4 
 
 

Proof:  As a + b = a + c = a + d we have 
b + c + d < a + b 
[a + c + ad] + [d + a(b + c)] = b + c + d 
[b + c + ad] + [a (b + c + d) + d (b + c)] 
= [[b + c + ad] + a (b + c + d)] + d (b + c) 
= (b + c + d) [a + b + c + ad] + d (b + c) (L is modular) 
= (b + c + d) + d (b + c) (as a + b > b + c + d) 
= b + c + d. 
[d + a (b + c)] + [a (b + c + d) + d (b + c)] 
= d + a (b + c + d) 
= (d + a) (b + c + d)   (L is modular) 
= b + c + d (as a + d > b + c + d). 





 







d1 = a(b+c)+d(b+c)









(b+ac)d1+(c+ab)d1 

c+ab+(b+ac)d1 
b+ac+ 
(c+ab)d1 

b+c 
ad+a(b+c)+d(b+c) 

a(b+c+d)+d(b+c) 

b+c+d 

b+c+ad d+a(b+c) 
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So much for the unions for the first diamond.  Next 
 [b + c + ad] [d + a (b + c)] 
= ad + (b + c) [d + a(b + c)] 
  (L is modular and ad < d + a (b + c)). 
= ad + d (b + c) + a (b + c) 
  (L is modular and b + c > a (b + c)). 
 
[b + c + ad] [a (b + c + d) + d (b + c)] 
= d (b + c) + [b + c + ad] [a (b + c + d)] 
  (L is modular, d (b + c) < b + c + ad) 
= d  (b + c) + (b + c + d) (a (b + c) + ad) 
  (L is modular and a > ad) 
= d (b + c) + a (b + c) + ad 
  (as (b + c + d) > a (b + c) + ad). 
  [d + a (b + c)] [a (b + c + d) + d (b + c)] 
= d (b + c) + [d + a (b + c)] [a (b + c + d)] 
  (L is modular and d(b+c) , d + a(b+c) 
= d (b+c) + [ad + a (b+c)] [b + c + d] 
  (L is modular and a > a (b + c)) 
= d (b + c) + ad + a (b + c) (as ad + a (b + c) < (b + c + d)). 
 
Thus the vertification for the upper diamond is complete. 
 As for the middle square 
 (b + c) + [ad + a (b + c) + d(b + c)] 
 = b + c + ad. 
 (b + c) [ad + a (b + c) + d (b + c)] 
 = a (b + c) + d (b + c) + ad (b + c) 
  (as L modular and (b + c) > a (b + c) + d (b + c)) 
 = a (b + c) + d (b + c). 
 
 Next we come to the lower diamond. 
 [(b + ac) + (c + ab)d1] + d1 
 = (b + ac) + d1 
 = (b + ac) + a (b + c) + d (b + c) 
 = (b + c) (a + b + ac) + d (b + c) 
  (L is modular and (b + c) > b + ac). 
 = (b + c) + d (b + c)  
  [as a + b > b + c by Lemma 3.12] 
 = b + c. 
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 [(c + ab) + (b + ac)d1] + d1 
 = (c + ab) + d1 
 = (c + ab) + a (b + c) + d (b + c) 
 = (b + c) (a + c + ab) + d (b + c) 
   (L is modular and (b + c) > c + ab] 
 = b + c + d(b + c) 
  (as a + c > b + c by Lemma 3.12) 
 = b + c 
  [(b + ac) + (c + ab) d1] + [(c + ab) + (b + ac)d1] 
 = b + c. 
 
Next for the intersections in the lower diamond we have 
 d1 [(b + ac) + (c + ac)d1] 
 = (b + ac)d1 + (c + ab)d1    (L is modular) 
 d1 [(c + ab) + (b + ac)d1] 
 = (c + ab)d1 + (b + ac)d1   (L is modular). 
 [(b + ac) + (c + ab)d1]   [(c + ab) + (b + ac)d1] 
 = (c + ab)d1 + (b + ac) [(c + ab) + (b + ac)d1] 
  [L is modular and (c + ab)d1 < c + ab + (b + ac)d1] 
 =  (c + ab)d1 + (b + ac)d1 + b(a + ac) (c + ab) 
  [L is modular and (b + ac)d1 < (b + ac)] 
 = (c + ab)d1 + (b + ac)d1 + ac + b (c + ab) 
  [L is modular and ac < c + ab] 
 = (c + ab)d1 + (b + ac)d1 + ac + bc + ab 
  [L is modular and b > ab] 
 = (c + ab)d1 + (b + ac)d1 + ab + ac 
  [as a > bc implies ab > bc] 
 = (c + ab)d1 + (b + ac)d1 
  [(b + ac)d1 > ac, (c + ab)d1 > ab]. 
 
 Thus the proof is complete for figure 3.4.  The proof in the 
case of figures 3.5 and 3.6 follows from symmetry in the figures 
and as there exists perfect symmetry in the elements b, c, d.  
Now the homomorphism which annuls (b + c, b + c + ad),  
(d1, d1 + ad) gives the homomorphic image isomorphic to the 
lattice M3,3 of figure 3.3. 
 
Lemma 3.15:  If L is a modular lattice which is non 
supermodular then for the four elements a, b, c, d of Lemma 
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3.14 in the case b + c + d = b + c + ad = c + d + ab = d + b + ac; 
there exists either a sublattice isomorphic to the lattice M4 as 
shown in figure 3.7.     
 

 

 

 

 
Figure 3.7 

 
or a sublattice isomorphic to M3,3 as shown in figures 3.8 and 
3.9. 
 

 

 

 

 

 

Figure 3.8 

 
Proof:  Given b + c + ad = b + c + d = c + d + ab = d + b + ac. 
 
 Consider 
 b1 = b + ac + ad 
 c1 = c + ab + ad 
 d1 = d + ab + ac 
 
then  b1 + c1 = c1 + d1 = d1 + b1 = b + c + d.  Also a + b1 = a + b 
= a + c1 = a + d1.   







 c1 

b1c1d1

a(b+c+d) 
+b1c1d1 

b+c+d 

b1  d1 















 

(b+d) (b+c) 

a(b+d) (b+c) 







(b+ad)(b+c) 

(b+ad)(c+ab) 

(b+ad)(ab+ac) = 
a(b+ad) (b+ac) 

(ab+ad) (b+c) = 
a(b+ad)(b+c) 

(b+ad)(b+ac) 

(d+ab)(b+c) 
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Let a1 = a (b1 + c1) 

then 
 a1 + b1 = a (b1 + c1) + b1 
 = (a + b1) (b1 + c1) 
 = (b1 + c1) [as a + b1 = a + b > b1 + c1]. 
 
Similarly 
 a1 + c1 = b1 + c1 
 a1 + d1 = a (c1 + d1) + d1 
 = (a + d1) (c1 + d1) 
 = c1 + d1 
 = b1 + c1. 
 
Hence the sum of any two of a1, b1, c1, d1 equals b + c + d. 
Next 
 a1b1 = a (b1 + c1)b1 
 = ab1 
 = a (b + bc + ad) 
 = ab + ac + ad. 
 
Similarly, 
 a1c1 = a1d1 = ab + ac + ad 
 b1c1 = (b + ac + ad) (c + ab + ad) 
 = ac + ad + b (c + ab + ad) 
   (L is modular and ac + ad < (c + ab + ad)) 
 = ab + ac + ad + b (c + ad). 
Therefore 
 b1c1  ab + ac + ad. 
Similarly 
 c1d1 > ab + ac + ad 
and 
 d1b1 > ab + ac + ad. 
Now two cases arise 
(1) Either b1c1 = c1d1 = d1b1 = b1c1d1 or one of b1c1  b1c1d1. 
 In the first case we have the lattice as shown in figure 3.7 

isomorphic to the lattice M4 consisting of b + c + d,  
a2 = (a1 + b1c1d1), b1, c1, d1 and b1c1d1. 
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Figure 3.7 
 
If further the elements b + ac + ad, c + ab + ad, ab + ac + d, b + 
c + d coincide, then the sublattice isomorphic to M4 collapses. 
 
In this situation the elements (b + d) (b + c), a (b+d) (b+c), 
(d+ab) (b+c), (b + ad) (b+c), (ab+ad) (b+c), (b+ad) (b+ac), 
(b+ad) (c+ab) (c+ab) and (b+ad) (ab+ac) form a sublattice 
isomorphic to M3,3 of the lattice as shown in figure 3.8.   
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.8 

 
For a (b+d) (b+c) + (d+ab) (b+c) 
 = (b+d) (b + c) [a(b+c) + d + ab] 
  (b+c+d  a (b+c) + d + ab 
     ab + ac + d = b + c + d) 
 = (b + d) (b + c) (b + c + d) 
 = (b + d) (b + c). 
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a(b+d) (b+c) + (b+ad) (b+c) 

= (b+c) (b+d) (a(b+c) + b + ad) 
= (b+c) (b+d) (b+c+d) 
= (b+c) (b+d). 

 
(b+c) (d+ab) + (b+c) (b+ad) 

= (b+c) (d+ab+(b+c) (b+ad)) 
(as ab < (b+c) (b+ad)) 

= (b+c) (d+b+c (b+ad)) 
  (as c(b+ad) < (b+ad) b+d) 

= (b+c) (b+d). 
  (b+c) (b+ad) a(b+c) (b+d) 

= (b+c) a(b+ad) = (b+c) (ab+ad). 
 
Next (b+c) (d+ab) a(b+c) (b+d) = (b+c) a(d+ab) 
 = (b+c) (ab+ad). 
 
Also (b+c) (b+ad) (b+c) (d+ab) 
 = (b+c) (ab+(b+ad)d) 
 = (b+c) (ab+bd+ad) 
 = (b+c) (ab+bd+ad)   (a > bd so ad > bad) 
 = (b+c) (ab+ad).     
 
Now for the lower diamond 
 (b+c) (ab+ad) + (b+ac) (b+ad) 
 = ab + ad (b+c) + b + ad(b+ac) 
 = b + ad(b+c) = (b+ad) (b+c). 
 
(b+c) (ab+ad) + (b+ad) (c+ab) 
 = ab + ad (b+c) + ab + c(b+ad) 
 = ab + ad (b+c) + ab + c (b+ad) 
 = ab + (b+ad) (ad (b+c) + c) 
 = ab + (b+ad) (ad +c) (b+c) 
 = (b + ad) (b + c) (ab + ad + c) 
 = (b + ad) (b+c) (b+c+d) 
    (as c + ab + ad = b + c + d) 
 = (b + ad) (b + c). 
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 (b+ac) (b + ad) + (b+ad) (c+ab) 
 = b + ad (b+ac) + ab + c(b+ad) 
 = b + (b+ad) (c+ad (b+ac)) 
 = (b+ad) (b+c). 
 
As for intersections 
 (b+c) (ab+ad) (b+ac) (b+ad) 
 = (b+ac) (ab+ad) = a (b+ad) (b+ac) 
 (b+c) (ab+ad) (b+ad) (c+ab) 
 = a (b+ad) (c+ab) = a(b+ad) (b+ac). 
 
 (b+ad) (b+ac) (b+ad) (c+ab) 
 = (b+ad) (b+ac) (c+ab) 
 = (b+ad) (ab+c(b+ac)) 
 = (b+ad) (ab+cb+ac) 
 = (b+ad) (ab+ac)   (as a > bc, ab > bc) 
 = a (b+ad) (b+ac). 
 
 Further M3,3  cannot collapse, as this will mean 
 a(b+d) (b+c) = (b+d) (b+c) 
 implies 
 a(b+d) (b+c) + a(b+d) = (b+d) (b+c) + a(b+d) 

that is 
a(b+d) = (b+d) (b+c+a(b+d)) 
= (b+d) (b+c+d) 
as b+c+d = b+c+ad < b+c+a (b+d) < (b+c+d) 
that is a(b+d) = (b+d); 

a contradiction as (a, b, d) generates a non-distributive lattice, 
which means the sublattice of the figure 3.9 exists. 
 
 
 
 
 
 
 
 
 

Figure 3.9 
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(2)  Next let us consider the alternate possibility.  That is among 
b1c1, c1d1, d1b1 atleast one is different from b1c1d1.  Without loss 
in generality let it be b1c1, that is b1c1 > b1c1d1. 
 
 Then the elements (b1+d2) (c1+d2) c1(b1+d2), b1(c1+d2), 
(a1+b1c1) (d1+b1c1) = d2, (a1+b1c1d1) (d1+b1c1), d1 (a1+b1c1), b1c1 
and b1c1d1 form a sublattice isomorphic to the lattice of figure 
3.10  For 
 
 b1c1 [(a1 + b1c1d1) (d1+b1c1)] 
 = b1c1 (a1 + b1c1d1) 
 = a1b1c1 + b1c1d1 (L is modular) 
 = b1c1d1 (as b1c1d1 > a1b1c1). 
 
Also b1c1 [d1 (a1+b1c1)] = b1c1d1. 
Next  
 [d1 (a1+b1c1)] [(a1+b1c1d1) (d1+b1c1)] 
 = d1 (a1+b1c1d1) 
 = a1d1 + b1c1d1 (L is modular) 
 = b1c1d1   (as a1d1 < b1c1d1). 
 
Now for unions for the lower diamond 
 b1c1 + [(d1 + b1c1) (a1+b1c1d1)] 
 = (d1 + b1c1) [b1c1 + a1 + b1c1d1]   (L is modular) 
 = (d1 + b1c1) (a1 + b1c1) 
 = d2. 
 
b1c1 + [d1 (a1 + b1c1)] 
 = (b1c1 + d1) (a1 + b1c1)   (L is modular) 
 = d2. 
 
[(a1 + b1c1d1) (d1 + b1c1)] + [d1 (a1 + b1c1)] 
 = (d1 + b1c1) [a1 + b1c1d1 + d2 (a1 + b1c1)] 
      (L is modular) 
 = (d1 + b1c1) [a1 + d1 (a1 + b1c1)] 
 = (d1 + b1c1) [(a1 + d1) (a1 + b1c1)] 
 = (d1 + b1c1) (a1 + b1c1)   (as a1+d1 = a1 + b1). 
 
For the intersections in the upper diamond 
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 [b1 (c1+d2)]  [c1 (b1+d2)] = b1c1 
 [b1 (c1 + d2)] d2 = b1d2 
      = b1 (a1 + b1c1) (d1 + b1c1) 
      = (a1b1 + b1c1) (d1 + b1c1)   
      = b1c1 (d1 + b1c1)   (as a1b1 < b1c1) 

= b1c1. 
 
Similarly 
 c1d2 = b1c1. 
 
As regard unions 
 b1 (c1+d2) + d2 = (b1 + d2) (c1 + d2). 
 
Similarly 
 c1 (b1 + d2) + d2 = (c1 + d2) (b1 + d2). 
 
Also 
 b1 (c1+d2) + c1 (b1 + d2) 
 = (b1 + d2) [b1 (c1 + d2) + c1] 
 = (b1 + d2) [(b1 + c1) (c1 + d2)] 
 = (b1 + d2) (c1 + d2)     (as b + c1 > b1 + d2). 
  
 Thus the sublattice of figure 3.10      
 

 

 

 

 

 
Figure 3.10 

exist.  No two elements of this lattice can equal as this will 
imply the equality of b1c1 and b1c1d1 - a contradiction.  Thus the 
proof of Lemma 3.15 is complete. 
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 Combining these lemmas we obtain. 
 
THEOREM 3.2:  If L is a modular lattice having a set of 4 
elements a, b, c, d satisfying the following 

(1) a + b = a + c = a + d  

  a 

(2) a > bc, cd, db. 
 

Then either L has a sublattice isomorphic to M4 or contains 
a sublattice whose homomorphic image is isomorphic to M3,3. 
 
 Theorem 3.2 with Lemma 3.12 gives. 
 
THEOREM 3.3:  A modular lattice L is supermodular if and only 
if L has no sublattice whose homomorphic image is isomorphic 
to M4 and M3,3. 
 
Corollary 3.1:  A lattice is supermodular if and only if L does 
not contain a pertagon or sublattice whose homomorphic images 
are isomorphic to M4 and M3,3. 
 
Lemma 3.16:  The dual of a lattice L is supermodular if and 
only if there exists a set of four elements a, b, c, d in L such that 
ab = ac = ad < a; and a < b + c, c + d, d + b. 
 
Proof:  Easy verification 
 As the dual of a modular lattice is modular and the lattices 
M4 and M3,3 are self dual. 
 By duality, we obtain 
 
THEOREM 3.4:   A modular lattice L is dually supermodular if 
and only if L has no sublattice isomorphic to M4 and has no 
sublattice whose homomphic image is isomorphic to M3,3. 
 
 As an immediate corollary we get. 
 
THEOREM 3.5   A lattice L satisfies 
 (a + b) (a + c) (a + d) = a + bc (a + d) + cd (a + b) +  
db (a + c) for all a, b, c, d in L if and only if it satisfies ab + ac 
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+ ad = a (b + c + ad) (c + d + ab) (a + b + ac) for all a, b, c, d 
in L. 
 
Proof:  The proof follows as any supermodular or dually 
supermodular lattice is modular. 
 
 Next we obtain a characterization of the subdirectly 
irreducible supermodular lattices using a result due to B. 
Johnson [1968]  [cf. Theorem of preliminaries) combined with a 
result due to G. Gratzer (1966). 
 
 “A subdirectly irreducible modular lattice of length n  3 
contains a sublattice whose homomorphic image is isomorphic 
to M3,3. 
 
THEOREM 3.6:  A subdirectly irreducible supermodular lattice 
is isomorphic to the two element chain C2 or the five element 
modular lattice M3. 
 
Proof:   Let L be a subdirectly irreducible lattice.  If length of L 
is 1 then L is isomorphic to C2.  If length of L is 2 then as L is 
subdirectly irreducible it can either be M3 or has a sublattice 
isomorphic to the lattice M4. 
 
 But L is supermodular and hence the other possibilities 
cease to exist. Hence L is isomorphic to M3. 
 
 If length of L  3 then as L is subdirectly irreducible and 
modular (being supermodular), we can apply B. Johnson’s 
result [  ]  and obtain the sublattice isomorphic to M3,3 which in 
turn gives rise to a contradiction as then L ceases to be 
supermodular.  Thus the proof of the theorem. 
 
 Combining this with the famous Birkhoff’s theorem we 
obtain. 
 
Theorem 3.7:  A lattice L is supermodular if and only if L is a 
subdirect union of two element chain and the five element 
modular lattice M3. 
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Proof:  If L is supermodular, then by Birkhoff’s theorem it is a 
subdirect union of subdirectly irreducible supermodular lattices.  
Using the above we see that any subdirectly irreducible 
supermodular lattice is either C2 or M3. 
 
 Hence L is a subdirect union of copies of C2 and M3. 
 
 For the converse it will suffice to see that both C2 and M3 
are supermodular.  Also by lemma 3.7 and 3.8 direct union of 
supermodular lattices is supermodular and sublattice of a 
supermodular lattice is supermodular.  Hence subdirect unon of 
supermodular lattices is supermodular.  So a subdirect union of 
copies of C2 and M3 is supermodular. 
 
Corollary 3.1:   If a lattice L is supermodular then every 
element of L has atmost two relative complements in any 
interval. 
 
Proof:   Follows from Theorem 3.7. 
 
Note:   The converse of Corollary 3.2 is not necessarily true. 
 
Proof:   By an example. 
 
 The lattice M3,3 satisfies the requirements that every 
element of L has atmost two relative complements in any 
interval but L is obviously not supermodular. 
 
Corollary 3.2:  Let L be a supermodular lattice and let I = (x1, 
x2) be a prime interval in L.  Let I1 = (y1, y2) and I2 = (z1, z2) be 
any two intervals of L such that I, I1 and I2, belong to a chain of 
L.  If I1 and I2 are annulled by I (the congruence generated by 
I) then atleast one of I1, I2 is a trivial interval. 
 
Proof:  It is a direct consequence of Theorem 3.6. 
 
Remark 3:  The primeness of the interval I = (x1, y1) is 
absolutely essential in the above corollary.  Otherwise I can be 
written as a nontrivial sum of two other congruence and hence I 
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may have more than an interval as its lattice translate belonging 
to a chain of L. 
 
 (For example the interval I of the supermodular lattice L of 
the adjoining figure 3.11). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11 
 
 
Remark 3.2:   The converse of Corollary 3.3 is not necessarily 
true. 
 
Proof:  By an example 
 
 Consider M4 which satisfies the hypothesis for the converse 
of Corollary 3.3.  Nevertheless it is not supermodular. 
 
Corollary 3.4:  The congruence generated by a prime interval is 
separable in any supermodular lattice. 
 
Proof:  It is a direct consequence of Corollary 3.3. 
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Chapter Four 
 
 

 
 
SEMI-SUPERMODULAR LATTICES 
 
 
 
 
 In the last chapter we studied supermodular lattices.  An 
equational class of modular lattices generated by the finite 
modular lattice M3.  In this chapter, we initiate a study into a 
series of equational classes of modular lattices termed n-semi-
supermodular lattices, for each finite integer n.  The classes of 
distributive and supermodular lattices correspond to the integers 
n = 2,3 respectively.  For n  4, we observe that these equational 
classes are no longer generated by their finite members.  Further 
we show that a lattice L is n-semi-supermodular if and only if it 
does not contain any sublattice whose homomorphic image is 

isomorphic to 
1 2 ki 2,i 2,...,i 2M     and 

1 2 ki 2,i 2,...,i 2M̂     such that i1, i2, 

…, ik are integers  1 with i1 + i2 + … + ik = (n–1). 
 
 To avoid cumber some calculations we give rigorous proof 
in the case of n = 4 and indicate that the method of proof 
adopted for n = 4 can be extended for any general n (finite). 
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 We start with the definition of 4-semi-supermodularity in 
lattices, which we choose to call semi-supermodular leaving the 
integer 4 for convenience. 
 
DEFINITION 4.1:  A lattice L is said to be semi-supermodular if 
it satisfies the following identity. 
 
 (a+x1) (a+x2) (a+x3) (a+x4) = a + x1x2 (a + x3) (a + x4) +  
x1x3 (a + x2) (a + x4) + x1x4 (a + x2) (a+x3) + x2x3 (a+x1) (a+x4) + 
x2x4 (a+x1) (a+x3) + x3x4 (a+x1) (a+x2) for all a, x1, x2, x3, x4  
in L. 
 
Lemma 4.1   Any semi-supermodular lattice is modular. 
 
Proof:  Put x2 = x3 = x4 we get the modular law. 
 
THEOREM 4.1:  A modular lattice L is not semi-supermodular if 
and only if L contains elements a, x1, x2, x3, x4 such that a + x1 = 
a+x2 = a + x3 = a + x4 > a and a > x1x2, x1x3, x1x4, x2x3, x2x4 
and x3x4. 
 
Proof:  If L contains elements a, x1, x2, x3, x4 as specified in the 
lemma then for this set of 5 elements of L the left hand side 
equals a + x1 while the right hand side equals a and the two are 
distinct.   
 

Hence L is not semi-supermodular. 
 
 Conversely if L is not semi-supermodular then there exist a 
set of 5 elements a, x1, x2, x3, x4 in L such that semi-
supermodular identity is not satisfied in L. 
 
 Let  
 x1  =   x1 (a + x2) (a+x3) (a+x4) 
 x2  = (a + x1) x2 (a+x3) (a+x4) 
 x3  = (a + x1) (a + x2) x3 (a+x4) 
 x4 =  (a + x1) (a+x2) (a+x3) x4. 
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 A = R.H.S. of the semi-supermodular identity when a, x1, 
x2, x3, x4 are substituted in it.  The set of 5 elements A, x1, x2, x3 
and x4 satisfy the requirements of the lemma. 
 
 As a corollary we get. 
 
Corollary 4.1:  Any supermodular lattice is semi-supermodular. 
 
Proof:  Equivalently we can prove if a lattice is not semi-
supermodular then it is not supermodular.  This follows as a 
consequence of the last lemma and lemma of Chapter 2 which 
states a lattice is not supermodular if and only if it contains a set 
of 4 elements a, x1, x2, x3 such that a + x1 = a + x2 = a + x3  a 
and a > x1x2, x1x3 and x2x3. 
 
Lemma 4.2: Any semi-supermodular lattice is not necessarily 
supermodular. 
 
Proof:  By examples. 
 
 These lattices M4 and M3,3 are semi-supermodular but not 
supermodular. 
 
 Thus the equational class of semi-supermodular lattice lies 
between the equational class of modular lattices and the 
equational class of supermodular lattices. 
 
Lemma 4.3:  If a lattice L contains a sublattice whose 
homomorphic image is isomorphic to the lattices of the figures 
4.1 then L is not semi-supermodular. 
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   M4,3        M3,4 
 
 
 
 
 
 
 
 
 
 

         3,3,3M̂  

 
Figure 4.1 

   
Proof:  The set of 5 elements as marked in the figures satisfy 
the requirements of theorem 4.1 and hence these cannot be got 
as homomorphic images of sublattices of semi-supermodular 
lattices. 
 
 Now let L be a modular, non semi-supermodular lattice, 
then by Theorem 4.1, L contains a set of 5 elements a, x1, x2, x3, 
x4 such that 

a + x1  = a + x2 = a + x3 = a + x4 > a 
with a > xi xj (i  j for all i, j = 1, 2, 3, 4) 
 
Consider the set T of elements given by 
 x1 + x2 + x3 + ax4 
 x1 + x2 + ax3 + x4 
 x1 + ax2 + x3 + x4 
 ax1 + x2 + x3 + x4. 
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 Two cases may arise; 
I. At least one of the elements in T is different from  

x1 + x2 + x3 + x4. 
II. Every member of T equals x1 + x2 + x3 + x4. 

 
If case I occurs, let us without loss in generality assume that 

one of the elements different from x1 + x2 + x3 + x4 is x1 + x2 + 
x3 + ax4. 

 
Now as x1 + x2 + x3 + ax4 < x1 + x2 + x3 + x4.   We have a 

sublattice isomorphic to M3 consisting of elements. 
 
x1 + x2 + x3 + x4,   U = a(x1 + x2 + x3 + x4) 
x4 (x1 + x2 + x3)   V = a(x1 + x2 + x3) + x4 
W = x1 + x2 + x3 + ax4 and  
X1 = a(x1 + x2 + x3) + ax4 + x4 (x1 + x2 + x3) as shown in 

figure 4.2. 
 
 
 
 
 
 
 
 
 
 
 
     Figure 4.2           Figure 4.3 
 

Now the set a, x1, x2, x3 satisfies all the properties required 
for theorem 4.1.  In case it has a sublattice isomorphic to M3,3 of 
figures 3.4, 3.5, 3.6 of  chapter III then let S be renamed as 
shown in the figures 4.3 then p < x1 + x2 + x3 + ax4 and not less 
than or equal to a (x1 + x2 + x3) + ax4 + x4 (x1 + x2 + x3) = X1.  
Put X1 + x = K1 then Ki lies between X1 and x1 + x2 + x3 + ax4 
and X = K1p lies between x and p.  Let Y = y + Xz and Z = z+Xy 
then p, X, Y, Z, Xy + Xz is isomorphic to M3.  Also l1 = r (Xy + 
Xz) lies between l and r.  Let m1 = l1n + m and n1 = l1m + n then 
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r, l1, m1, n1, l1m + l1m is isomorphic to M3.  Also the elements 
(K1 + U) (K1 + V), (K1 + U), (K1+V), W + (K1 + U) (K1 + V), 
(x1 + x2 + x3 + x4) form a sublattice isomorphic to M3.  These 
three sublattices M3 combine to give us to required M3,3,3 (cf. 
figure 4.4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.4 
 
The only difficulty we may face is when K1 = x1 + x2 + x3 + 

ax4.  But this could be avoided by choosing a > x3 (x1 + x2) in 
which case K1 will coincide with x1; thus avoiding the 
difficulty. 

 
Next if a, x1, x2, x3 satisfy the condition x1 + x2 + ax3 = x1 + 

ax2 + x3 = ax1 + x2 + x3 = x1 + x2 + x3; then let b1 = x1 + ax2 + 
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ax3; c1 = ax1 + x2 + ax3; d1 = ax1 + ax2 + x3 and a1 = a(x1 + x2 + 
x3). 

 
In case (1) b1c1 = c1d1 = d1b1 = b1c1d1 then by taking a2 = 
a1+b1c1d1 the elements x1+x2+x3, a2, b1, c1d1, b1d1c1 form a 
sublattice isomorphic to M4 as shown in figure 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 
 

In this case, consider F = X1 + b1c1d1 and 
F (x1+x2+x3)  =  a2 + x4 (x1 + x2 + x3) 
    =  G. 
Let 
  B1 = b1 + Gd1 
  C1 = c1 + Gd1 
  D1 = d1. 
 
These satisfy 
 G + B1  = G + C1 = G + D1 = B1 + D1 = C1 + D1 
 D1G = D1B1 = D1C1 = d1G. 
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We have two possibilities  
 
(1) If GB1 = GC1 = B1C1 = GB1C1 then D2 = D1 + GB1C1 
together with G, B1, C1, x1 + x2 + x3 and GB1C1 gives a 
sublattice isomorphic to M4.  Also as F lies between X1 and W. 

 
(F + U)  (F + V), (F + U), (F + V), 
 
W + (F + U) (F + V) and x1 + x2 + x3 + x4 

 
form a sublattice isomorphic to M3.  These two sublattices 
combine to give us the sublattice isomorphic to M3,4 as shown in 
figure 4.5. 
 
(2) In case one of GB1, GC1, B1C1 is different from GB1C1; let it 
be GB1  GB1C1.  Then as shown in lemma of the earlier 
chapter we obtain a sublattice S1 isomorphic to M3,3 consisting 
of GB1C1, GB1, C1(GB1+D1), (GB1C1+D1)(GB1+C1), D2 = 
(GB1+C1) (GB1+D1) G(B1+D2), (G+D2)B1, (G+D2) (B1+D2). 
 
 Consider the interval I = (G, G+D2); this interval is 
projective to (G(B1+D2), (G+D2) (B1+D2)) and so is nontrivial, 
as otherwise GB1 = GB1C1.  Now the interval I+F = (F, F+D2) is 
a nontrivial subinterval of J = (F, W) as J is projective to (G, 
x1+x2+x3).  Let I+F = (p, q) (say) then the elements (U+p) 
(V+p), q+(U+p) (V+p), (V+q), (U+q) (V+p), (U+q), (V+q) 
form a sublattice isomorphic to M3.  This together with the 
sublattice S1 (mentioned above) gives us the required sublattice 
with a homomorphic image isomorphic to M3,3,3 as shown in 
figure 4.6. 
 

If on the other hand one of b1c1, c1d1, d1b1 is other than 
b1c1d1 then without loss in generality, let us assume (2) b1c1d1  
b1c1. 
  

Let a1 = a (x1+x2+x3) then 
a1+b1 = a1+c1 = a1+d1 = b1+c1 = b1+d1 = c1+d1 and a1b1 =  
a1c1 = a1d1 
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Figure 4.6 
 
Consider the elements a1 + b1d1 + c1d1, b1 + c1d1, c1+d1b1, d1 call 
them a2, b2, c2, d2 respectively (say). 
 
 Those four elements satisfy the following conditions. 

(1) the sum of any 2 of the four equals a single element p 
and 

(2) the product of d1 with any one of the other three equals 
a single element q. 

 
Let G =  a2+x4 (x1+x2+x3) 
B1 = b2 + Gd2 
C1  = c2 + Gd2 
D1 = d2,  
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then we have a situation exactly similar to what we had in the 
earlier case.  A similar reasoning gives us to required result.  
Thus we have exhausted all the possibilities under case I. 
 
 Next we take up the possibilities under case II.  Let us recall 
that under this case every element of the set T equals x1 + x2 + 
x3 + x4. 
 
 Let T1 be the set of elements 
 

 T1  
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

x x ax ax ;ax ax x x

x ax x ax ;ax x ax x

ax x x ax ;x ax ax x

     
      
      

. 

 
Again two cases may arise. 
 

(A) Each element of T1 equals x1+x2+x3+x4. 
(B) At least one element of T1 is different from 

x1+x2+x3+x4. 
If (A) is satisfied then set 
1 = x1 + ax2 + ax3 + ax4 
2 = ax1 + x2 + ax3 + ax4 

3 = ax1 + ax2 + x3 + ax4 
4 = ax1 + ax2 + ax3 + x4 

and  a1 = a(x1+x2+x3+x4). 
 

The sum of any two of the above equal x1+x2+x3+x4.  The 
product of a1 with any one of 1, 2, 3, 4 equal 

ax1 + ax2 + ax3 + ax4. 
 
 If (1) i j = 1 2 3 4 for all i  j, i, j = 1, 2, 3, 4 then the 
elements a2  (=a1 + 1 2 3 4), 1, 2, 3, 4, (x1 + x2 + x3 + x4) 
and 1 2 3 4 form a sublattice isomorphic to M5 as shown in 
figure 4.7. 
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Figure 4.7 
 

 If (2) i j = j k = k i = i j k for some i  j  k, (i, j, k) 
 (1, 2, 3, 4) and i j k  1 2 3 4 then by a suitable 
permutation we can assume 
 
 1 2 = 2 3 = 3 4 = 1 2 3 and 
 1 2 3  1 2 3 4. 
 

Now 1 2 3 4, (a1 + 1 2 3 4) (1 2 3+ 4), 4 (1 2 3 
+ a1) 1 2 3, (1 2 3+ a1) (1 2 3 + 4) form a sublattice 
isomorphic to M3, while the elements x1+x2+x3+x4, a2 = (=a1 + 
1 2 3), 1, 2, 3, 1 2 3 form a sublattice isomorphic to M4. 

 
 Now the side (1 2 3, (1 2 3 + a1). (1 2 3 + 4)) of M3 
above is a subinterval of (1 2 3, a2) of M4. 
 
 Let G = (1 2 3+ a1) (1 2 3+ 4). 
 

Consider G1 (G+3) 1, (G+3) 2, 3; the product of any 
two of the above four elements equal 1 2 3.  The sum of 3 
with any one of the other three equal G+3. 

 
 Now let H = (G+3)1 and  K = (G+3) 2. 
  
 In case G + H = G + K = H + K = G + H + K then G+H+K, 
G, H, K, 3 (G+H+K), 1 2 3 form a sublattice isomorphic to 
M4; this combines with the M3 formed by elements 1 2 3 4, 

1234

x1+x2+x3+x4 





 4







a2 1 2 3 
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4 (1 2 3 + a1), (a1 + 1 2 3 4) (1 2 3 + 4), 1 2 3, G to 
give a sublattice isomorphic to M4,3 as shown in figure 4.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8 
 
 
 In case one of them say G+H  G+H+K then G+H+K, 
(G+H+K) 3 + (G+H)K, 3(G+H)+K, G+H, 3(G+H)+ K(G+H) 
= D2, G+HD2, H+GD2, HD2+GD2 form a sublattice isomorphic 
to M3,3. 
  

Now GD2 lies between G and 1 2 3.   
 
Let M  = 4 (1 2 3 + a1) 
 

N = (1 2 3 4 + a1) (1 2 3 + 4). 
 

Then G, GD2, M+NGD2, N+MGD2, MGD2 + NGD2 form a 
sublattice isomorphic to M3.  This sublattice combines with the 
above mentioned M3,3 to give us a sublattice with a 
homomorphic image isomorphic to M3,3,3 as shown in figure 4.9. 
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Figure 4.9 
 

Lastly if (iii) 12  1 2 3  1 2 3 4 then 1 2 3 4, 
M, N, 1 2 3, G form a sublattice isomorphic to M3. 
 
 Let  
 M1 = 3 (1 2 + a1) 
 N1 = (1 2 3 + a1) (1 2 + 3) 
 G1 = (1 2 + a1) (1 2 + 3) 
 
then 1 2 3, M1, N1, 1 2, G form a sublattice isomorphic to 
M3. 
 
 Further 1 2, 1, 2, a1 + 1 2, x1+x2+x3+x4 form a 
sublattice isomorphic to M3.   
 
 From these three sublattices we extract a sublattice which 
has a homomorphic image isomorphic to M3,3,3.  This consists of 
the elements 1 2 3 4, MN1, MN1, 1 2 3 (MN1 + NN1), 
MN1 + NN1; 1 2 3, GN1, M1 (GN1 + 1 2), 1 2 = (GN1 + 
M1), Q = (GN1 + 1 2) (GN1 + M1), 







 




M+NGD2 

M 

G 

GD2 





N 

MGD2+N 

 123 



MGD2+
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MGD2 
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  1 2, (GN1 + 1 2), M2 = 2 (GN1 + 1), N2 = 1 (GN1 + 
2), M2 + N2.  Figure 4.10 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
Figure 4.10 

 
 
So far the case (A).  Next we take up case (B). 
 

 Recall that in this every element of T equals x1+x2+x3+x4.  
In particular  x1 + x2 + x3 + ax4 = x1 + x2 + x3 + x4. 
 
This implies 
 
 a(x1 + x2 + x3 + x4) + x4 (x1 + x2 + x3) = x1 + x2 + x3 + x4 (cf. 
figure 4.2). 
 
 Similarly x1 + x2 + ax3 + x4 = x1 + x2 + x3 + x4 implies 
 a (x1 + x2 + x3 + x4) + x3 (x1 + x2 + x4 )  = x1 + x2 + x3 + x4 
and the other two equalities yield 
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 a(x1 + x2 + x3 + x4) + x2(x1 + x3 + x4) = x1 + x2 + x3 + x4 
and 
 a(x1 + x2 + x3 + x4) + x1 (x2 + x3 + x4) = x1 + x2 + x3 + x4. 
 
Put 
 A = a(x1 + x2 + x3 + x4) 
 X1 = x1 (x2+x3+x4) 

X2 = x2 (x1+x3+x4) 
X3 = x3 (x1+x2+x4) 
X4 = x4 (x1+x2+x3) 

 
then A + X1 = A + X2 = A + X3 = x1 + x2 + x3 + x4.  So A + Xi > 
A for all i = 1, 2, 3, 4. 
 
Now XiXj = xixj hence A > Xi Xj (i  j).  Also Xi + Xj + Xk 
 = (x1 + x2 + x3) (x1 + x2 + x4) (x1 + x3 + x4) (x2 + x3 + x4) 
 = X1 + X2 + X3 + X4 
for all (i, j, k) (i  j  k)  (1, 2, 3, 4) 
 
 If for this set of elements A, X1, X2, X3, X4 the 
corresponding set T1 of elements are all equal, then we proceed 
as in the case (A).  If not then without loss in generality let the 
element of T1 other than X1 + X2 + X3 + X4 be X1 + X2 + AX3 + 
AX4. 
 
 Either (1) A (X1 + X2) + X3 + X4  X1 + X2 + X3 + X4 or 
 (2) A (X1 + X2) + X3 + X4 = X1 + X2 + X3 + X4. 
 
In case (1) occurs 
 X1 + X2 + A(X3+X4)  X1 + X2 + X3 + X4 
for otherwise the upper diamond of figure 4.11 collapses forcing 
X1 + X2 + X3 + X4 = A (X1 + X2) + X3 + X4 a contradiction.  
Thus in this case of elements X1 + X2 + X3, X1 + X2 + A (X3 + 
X4), A (X1+X2) + X3 + X4,  
 
 A (X1 + X2 + X3) + (X1 + X2) (X3 + X4), A (X1 + X2) +  
A (X3 + X4) + (X1 + X2) (X3 + X4); X1 + X2, [A (X1 + X2) +  
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(X1 + X2) (X3 + X4)] = P, P (X1 + AX2) + (X2 + AX1), (X2 + 
AX1)P + (X1 + A X2),  
 
 R = [P (X1+AX2) + P (X2 + AX1)]; X3 + X4. 
 [A (X3 + X4) + (X1 + X2) (X3 + X4)] = Q, 
 (X3 + AX4) + Q (X4 + AX3), (X4 + AX3) + Q(X3 + AX4), 
 S = [Q (X4 + AX3) + Q (X3 + AX4)]; 
 

PQ, PS, QR and RS form a sublattice with a homomorphic 

image isomorphic to 3,3,3M


 as shown in figure 4.11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.11  

 
 

 In the other case that is in (2) we have 
 A(X1 + X2) + X3 + X4 = X1 + X2 + X3 + X4. 
 
Set 
 A1  =  A (X1 + X2 + X3 + X4) 
 B1  = A (X1 + X2) + AX3 + X4 
 C1 = A (X1 + X2) + X3 + AX4 
 D1  = X1 + X2 + AX3 + AX4. 

RS
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then the sum of any two of the above four elements equals X1 + 
X2 + X3 + X4; and the product of A1 with any one of the other 
three equals A (X1 + X2) + AX3 + AX4. 
 
 If B1 C1 = C1 D1 = D1B1 we obtain M4,3 as shown in figure 
4.12.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 
 
  

This consists of the elements X1 + X2 + X3 + X4, A2 =  
A1 + B1C1D1, B1, C1, D1, X1+X2, Q = B1 C1 D1 (X1 + X2), (X1 + 
AX2) + Q(X2 + AX1), Q(X1 + AX2) + (X2 + AX1), Q (X1 + AX2) 
+ Q(X2 + AX1). 
 

If B1C1  B1C1D1 then we obtain M3,3,3 as shown in figure 
4.13.  This consists of the elements B1C1D1, D1(A1+B1C1), 
(A1+B1C1D1) (D1+B1C1), B1C1, D2 = (D1 + B1C1)(A1 + B1C1D1), 
C1 (B1+D2), B1 (C1+D2), (B1+D2) (C1+D2). 
 
 R = Q (AX1 + X2) + Q (X1 + AX2) (where 
 Q = D1 (A1 + B1C1) (X1 + X2)), 
 
 RA(X1 + X2), Q(AX2 + X1), Q(X2 + AX1) and AX1 + AX2. 
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Figure 4.13 
 

 Thus we conclude this analysis by giving the theorem 
characterizing semi-supermodular lattices.  
 
THEOREM 4.2:  A modular lattice L is semi-supermodular if 
and only if it does not contain any sublattice, whose 
homomorphic image is isomorphic to M3,3,3, M4,3, M3,4, M5 or 

3,3,3M


. 

 Dually we observe 
 
THEOREM 4.3:  The dual of a modular lattice L is semi-super 
modular if and only if it does not contain any sublattice whose 
homomorphic image is isomorphic to M3,3,3, M4,3, M3,4, M5 and 

3,3,3M


 ( 3,3,3M


is the dual of the lattice 3,3,3M


). (cf. figure 4.1). 

 Hence we have. 
 
THEOREM 4.4:  The dual of a semi-supermodular lattice L is 
not necessarily semi-supermodular. 
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Figure 4.14 
 
 

Proof:  By an example.  Observe that 3,3,3M


 is semi 

supermodular; while its dual 3,3,3M̂  is not. 

 
 Unlike the equational class of supermodular lattices, the 
equational class of semisuper modular contains infinite 
subdirectly irreducible members. 
 
THEOREM 4.5:   The equational class of semi-supermodular 
lattices is not generated by its finite members. 
 
Proof:  It will suffice to give an example of an infinite 
subdirectly irreducible semi-supermodular lattice. 
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 Consider the lattice L in figure 4.14.  L consists of the direct 
product of Z (the set of all integers +ve, –ve, 0) with itself with 
the usual natural direct product order.   
 

For each integer n, two, extra element an–1, bn–1 are inserted 
in the squares formed by [((n–1), (n–1)), (n, n–1), (n–1, n),  
(n, n)] and [(n, n–1), (n+1, n–1), (n, n) (n+1, n)] so as to make 
them sublattices isomorphic to M3 (see figure 4.14). 
 
 Observe that every prime interval of L is projective to any 
other prime interval of L.  Thus L is subdirectly irreducible as it 
is discrete.  Further L has no sublattice with a homomorphic 

image isomorphic to M3,3,3, M3,4, M4,3 or M5 or 3,3,3M


.  Hence L 

is semi-supermodular.  L is obviously infinite.  Hence the 
statement of the theorem. 
 
 Now before we generalize semi-supermodularity for any 
integer n, we observe the following facts, which we enunciate in 
the form of the following lemma. 
 
Lemma 4.4: Let x1, x2, …, xn be a set of n elements (n > 3) of a 
modular lattice L satisfying 
 

xi + xj = 1 for i  j for all i, j = 1, 2, …, n. 
xixj = 0 for i  j for all i, j = 1, 2, …, n. 

 
that is they form a sublattice isomorphic to Mn. 
 
(1)  Let a1 be an element between x1 and 1, then there exist 
elements ai between xi and 1 for all i = 2, 3, …, n such that the 
sublattice of L generated by the set of n elements a1, a2, …, an 
contains a homomorphic image isomorphic to 
 

1 2 ri 2,i 2,...,i 2M      (where i1 + i2 + … + ir = (n–1) 

 
and i1, i2, …, ir  1). 
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(2) Let b1 be an element between 0 and x1, then there exist 
element b1 between 0 and xi for each i = 2, 3, …, n, such that the 
sublattice of L generated by the set of n elements b1, b2, …, bn 
contains a homomorphic image isomorphic to 

1 2 ri 2,i 2,...,i 2M     

(where i1 + i2 + … + ir = (n–2) and i1, i2, …, ir  1). 
 
 Further a subinterval of (1, a1) or (0, b1) is projective with 
the essential side of 

1 2 si 2,i 2,...,i 2M     so obtained. 

 
Proposition 4.1:  Essential side of 

1 2 ri 2 ,i 2 ,...,i 2M     is the side, 

whose additive or multiplicative translate meets every one of the 
Mi’s involved in the figure of 

1 2 ri 2 ,i 2 ,...,i 2M    . 

 
Proof:  By mathematical induction on the integer n.  When  
n = 3.  The elements a1, a2 = x2 + a1x3; a3 = x3 + a1x2, a1x2 + a1x3 
and 1 form a sublattice isomorphic to M3 with (a1, 1) as a side 
with the elements b1, b2 = x2 (a1 + x3), b3 = x3 (a1+x2),  
(a1+x2) (a1+x3), 0 form a sublattice isomorphic to M3 with (0, b1) 
as a side.  Thus when n = 3 the result is true. 
 
 Assume the result to be true for all n  m–1.  To prove it for 
n = m.  Set  
 
 a2 = a1xn + x2 
 a3 = a1xn + x3 
 . 
 . 
 . 
 an = xn 

 
then ai + aj = 1 for all i, j = 1, 2, …, n, aian = aixn for all i = 1, 2, 
…, n–1. 
 
(1) if ai aj = a1a2 … an–1 for all i, j = 1, 2, …, n–1 (i  j) then 1, 
a1, a2, …, an–1, an+a1a2 … an–1, a1a2, …, an–1 form a sublattice 
isomorphic to Mn. 
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(2)   If a1 a2  … an–1  
1 n 2

a ....a
   for a permutation (1, 2, …, 

n–2, n–1) of (1, 2, 3, …, n–1) then we can rearrange 1, 2, …,  
n–1 and get it as a1a2 … an–1  a1a2 … an–2. 
 
 If further aiaj = a1a2 … an–2 for all i, j = 1, 2, …, (n–2) (i j) 
then we obtain the two sublattices M3 formed by 
 
 a1a2  … an–1, a1a2 … an–2, cn = an–1 (a1a2 … an–2 + an), dn = 
(a1a2 … an–1 + an) (a1 … an–2 + an–1), (a1a2 … an–2 + an) (a1a2 … 
an–2 + an–1) = bn and Mn–1 formed by 1, a1, a2, …, an–2,  
an + a1a2 … an–2, an + a1a2 … an–2, a1a2 … an–2.   
 

Now bn lies between (a1a2 … an–2 + an) and 1.  By induction 
hypothesis applied to bn for this Mn–1 we get a sublattice 
isomorphic to 

1 2 ki 2,i 2,...,i 2M     with ik > 1 and i1 + i2 + … + ik  

= (n–3). 
 
 Further, the essential side of this 

1 2 ki 2,i 2,...,i 2M     is projective 

with a subinterval of (a1a2 … an–2, bn); which helps us to be an 
adjoining M3.  Hence we obtain 

1 2 ki 2,i 2,...,i 2,3M     with ik  1 and 

i1 + … + ik + 1 = (n–2) giving us the required result. 
 
 (3) if a1a2 … an–2  a1a2 … an–3 but a1a2 … an–3 = aiaj for all  
i, j = 1, 2, …, n–3.  Set en = (a1a2 … an–2 + an) (a1 …an–3 + an–2) 
(a1a2 … an–2 + an–1) then we obtain a M3 consisting of cnen + 
dnen, cnen, dncn a1 ... an–2 (cn en + dnen), a1a2 … an–1, another M3 
consisting of a1a2 … an–2, en (en+cn–1) a1a2 … an–3, (en + a1a2 … 
an–3) cn–1, (en + cn–1) (en+a1a2 … an–3) such that the side 
 
 cnen + dnen, a1 … an–2 (cnen + dnen) of the first M3 is 
projective with the side (en, a1 … an–2).   
 

Also the side [(en+cn–1) (en + a1a2 … an–3), (en+cn–1) a1 …  
an–3] of the lattice M3 is projective with the interval (a1a2 … an–3, 
en + a1 … an–3). 
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Put en + a1 … an–3 = f; f is an element between a1 … an–3 and 

a1a2 … an–3 + an and the elements 1, a1, …, an–3, an + a1 … an–3, 
a1a2 … an–3 form a sublattice isomorphic to Mn–2.    
 
 Again the induction hypothesis gives us a, 

1 2 li 2,i 2,...,i 2M    such that i1 + … + il  = (n–4).  These Mi’s together 

with the M3,3 mentioned above gives us the required M. 
 
 Thus we proceed until we exhaust all the ai’s and come to 
a1a2 alone. 
 
 Now we proceed to generalize the notion of semi-
supermodularity. 
 
DEFINITION 4.2:  A lattice L is called n-semi supermodular if it 
satisfies the identity  
 
(a+a1) … (a+an) 
 

     = 
n

i j 1 i j n
i j
i , j 1

a a a ( a a )...( a a )( a a )...( a a )



      
 

 
(where i( a a )


 means (a+ai) is omitted). 

 
 Just as we have proved the results for semi-supermodular 
lattices we can obtain the following results for any n-semi 
supermodular lattices. 
 
Lemma 4.5:  Any n-semi-supermodular lattice is modular. 
 
THEOREM 4.6:  A modular lattice L is n-semi-supermodular if 
and only if there does not exist a set of (n+1) elements a, a1, …, 
an in L such that a + a1 = a + a2 = … + a + an > a with a > aiaj 
(i  j) (i, j = 1, 2, …, n). 
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THEOREM 4.7:  A modular lattice L is n-semi-supermodular if 
and only if it does not contain a sublattice whose homomorphic 

images is isomorphic to 
1 2 ri 2 ,i 2 ,...,i 2M     or 

1 2 ri 2 ,i 2 ,...,i 2M   


 with  

i1 + i2 + … + ir = n–1, i, j  1. 
 
Proof:  We essentially use lemma and adopt a similar method of 
proof as in the case of Theorem 4.2. 
 
Corollary 4.1:   The dual of a n-semi supermodular lattice is 
not necessarily n-semi-super modular. 
 
Corollary 4.2:  Any m-semi-supermodular lattice is n-semi-
supermodular when m  n.  Corollary 4.2 combined with 
Theorem 4.5 gives; 
 
Corollary 4.3:  The equational classes of n-semisupermodular 
lattices (for n  4) are not generated by their finite members. 
 



 
 
 
 
 
Chapter Five 
 
 

 
 
SOME INTERESTING EQUATIONAL 
CLASSES OF MODULAR LATTICES 
 
 
 
 
 In chapter III, we studied supermodular lattices and 
characterized them as those modular lattices which do not 
contain sublattices isomorphic to M4 or M3,3.  In this chapter we 
are interested in characterizing those lattices which do not 
contain sublattices isomorphic to M4 alone (cf. theorem 5.1 and 
5.2).  Lastly we define modular elements in a general lattice L 
and characterize them in theorem 5.3. 
 
 We start with the investigation of the following lattice 
identity (A). 
 
(a+b) (a+c) (a+d) (ab+(a+b) c+d)) (ac+(a+c) d+b)   (ad + (a+d) 
b+c) = ab + ac + ad + (a+b) (ab+c)d + (a+c) (ac+d)b + (a+d) 
(ad+b)c for all a, b, c, d in L. 
 
Remark:  In any lattice the left hand side of equality (A) is in 
general greater than or equal to the right hand side of (A). 
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Lemma 5.1:   Any lattice L satisfying identity (A) is modular. 
 
Proof:  Let L be a lattice satisfying identity (A); put b = c in (A) 
we get (a+d) (b+ad) = ad + b(a+d) for all a, b, d in L which can 
easily be recognized as the modular law.  Hence L is modular.  
The converse however is not true.   
 

Thus we prove in the following: 
 
Lemma 5.2:  Every modular lattice need not necessarily satisfy 
identity (A). 
 
Proof:  By an example.  
 

Consider the lattice L of figure 3.1.  It does not satisfy the 
identity (A) for the set (a, b, c, d) of elements as specified in M4.  
That is, in this case the left hand side of (A) equals 1 and the 
right hand side equal 0. 

 
 As an immediate corollary, we obtain. 
 
Corollary 5.1:  If L is any lattice satisfying identity (A) then it 
cannot contain a sublattice isomorphic to M4. 
 

Proof is an easy consequence of the fact that any sublattice 
S of a lattice L satisfying identity (A) also satisfies (A). 

 
 Now arises the natural questions whether every modular 
lattice not satisfying identity (A) contains a sublattice 
isomorphic to M4? 
  

Fortunately for us, we again have a counter example. 
 
Lemma 5.3:  A modular lattice L not satisfying identity (A) 
need not necessarily contain a sublattice isomorphic to M4. 
 
Proof:  Consider the lattice of figure 5.1. 
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Figure 5.1 

and the elements a, b, c, d as marked in the figure 5.1.  The left 
hand side of identity (A) equals p, while the right hand side 
equals q.  Hence L does not satisfy identity (A).  One can easily 
see from the figure the absence of any sublattice in L, 
isomorphic to M4. 
 
 Next we characterize all modular lattices which satisfy 
identity (A) in the following theorem. 
 
THEOREM 5.1:  A modular lattice L does not satisfy identity (A) 
if and only if it contains a non-distributive triple (b, c, d) such 
that b, c, d are the common relative complements of an element 
‘a’ in some interval of L. 
 
 [(b, c, d) is called a non-distributive triple if the lattice 
generated by the triple is not distributive]. 
 
Proof:  Let L be a modular lattice containing a non-distributive 
triple (b, c, d) such that b, c, d are the common relative 
complements of a single element a in L in the interval (y, x). 
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 That is 
 
 a+b = a+c = a+d = x 
 ab  = a.c = a.d = y and 
 (b+c) (b+d) (c+d) > bc+cd+db. 
 

Now the set of four elements (a, b, c, d) does not satisfy 
identity (A) in L.  For when these elements are substituted in 
identity (A) the left hand side equals 

 
 x.x.x (y+xc+d) (y+xd+b) (y+xb+c) 
 = x(c+d) (d+b) (b+c)  (as x > b, c, d > y) 
 = (c+d) (d+b) (b+c)   (as x > b+c). 
 
The right hand side equals 
 y + y + y + x (y + c)d + x(y + d)b + x (y + b)c  

= y + cd + db + bc   (as x > b, c, d > y) 
= cd + db + bc      (as bc > y).  

 
By hypothesis (b, c, d) is a non-distributive triple. Hence the 

two sides are not equal.  Conversely let L be a modular lattice 
not satisfying identity (A).  That is there exists a set of four 
elements (a, b, c, d) in L such that 
 
(a+b) (a+c) (a+d) (ab+(a+b)c+d) (ac+(a+c)d+b)(ad+(a+d)b+c)   

ab+ac+ad+(a+b) (ab+c)d +  
(a+c) (ac+d)b + (a+d) (ad+b)c.  (1) 

 
Let e1   = (a+b) (a+c) (ab+ac+d) 

   = ab + ac + d (a+b) (a+c)      
(L is modular) 
 

e2   = (a+c) (a+d) (ac+ad+b) 
   = ac + ad + b(a+c) (a+d) 
 
e3   = (a+d) (a+b) (ad+ab+c) 
   = ad+ab+c(a+d) (a+b). 
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Then a + e1 = a + e2 = a + e3 = (a+b) (a+c) (a+d) and  
ae1 = ae2 = ae3 = ab + ac + ad. 
 
e1 + e2  = ab + ac + d(a+b) (a+c) + ac + ad + b(a+c) (a+d) 
 

= ab + ac + ad + (a+b) (d(a+c) + b(a+c) (a+d))    
(as (a+b)  b(a+c) (a+d)) 
 

 = ab+ac+ad + (a+b) (a+c) (d(a+c) + b (a+d))   
(as (a+c)  d(a+c)) 
 

 = ab+ac+ad+(a+b) (a+c) (a+d)   (d(a+c)+d)   
(as (a+d)  d(a+c)) 
 

 = (a+b) (a+c) (a+d) (ab+ac+ad+b+d (a+c)) 
   (as (a+b) (a+c) (a+d)  ab+ac+ad) 
 
 = (a+b) (a+c) (a+d) (ac+d(a+c) + b)   

(as ab < b and ad < (a+c)d). 
 
 Similarly we obtain 
 
 e2 + e3   = (a+b) (a+c) (a+d) (ad+(a+d) b+c)   and 
 e3 + e1 = (a+b) (a+c) (a+d) (ab + (a+b) c+d) 
 
 By symmetry of the operations (+) and (.) in this set up,  
we have 
 
 e1e2  =  ab + ac + ad + (a+c) (ac+d)b 
 e2e3  = ab + ac + ad + (a+d) (ad+b)c 
 e3e1  = ab + ac + ad + (a+b) (ab+c)d. 
 
 Hence, the left hand side of ineuqatity (1) equals 
 (e1+e2) (e2+e3) (e3+e1) and the right hand side equals 
 e1e2 + e2e3 + e3e1. 
 
 Hence, we establish the existence of a non-distributive triple 
(e1, e2, e3) in L, this is turn implies no ei = ej for i  j  (i, j = 1, 2, 
3) as otherwise (e1, e2, e3) will cease to be non-distributive.  
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Also a  ei for any i = 1, 2, 3; otherwise if a = ei then a + ei = aei.  
This implies (a+b) (a+c) (a+d) = ab+ac+ad.   
 

Now (a+b) (a+c) (a+d)  e1, e2, e3  ab + ac + ad.  So the 
sublattice generated by (e1, e2, e3) is contained in the convex 
sublattice. 
 

S = (ab + ac + ad, (a+b) (a+c) (a+d)) 
 

In particular (e1 + e2) (e2 + e3) (e3 + e1) and e1e2 + e2e3 + e3e1 
are elements in S.  If the greatest and the least elements of S are 
equal then any two of the elements in the convex sublattice S 
are equal.  Thus the two elements 

 
(e1 + e2) (e2 + e3) (e3 + e1) and e1e2 + e2e3 + e3e1 

are equal. 
 
 A contradiction to our hypothesis.  Hence we establish the 
existence of a non-distributive triple (e1, e2, e3) in L such that 
they are the common relative complements of the single element 
a in the interval (ab + ac + ad, (a+b) (a+c) (a+d)). 
 
 Lastly we come to the characterization of those modular 
lattices which contain a sublattice to M4 in the following. 
 
THEOREM 5.2:   A modular lattice L contains a sublattice 
isomorphic to M4 if and only if L contains a subset of four 
elements (a, b, c, d) such that equality (A) is not satisfied by this 
set.  However this set of four elements satisfy the following 
identity and its dual for every permutation of the element (b, c, 
d). 
 
 a (ab+(a+b)c+d) (ac+(a+c) d+b)) (ad+(a+d) b+c) +  

(a+b) (a+c) (ab+ac+d) (ad+(a+d) b+c)  
 

 = (a+b) (a+c) (a+d) (ab+(a+b) c+d)  (ac + (a+c) d+b)  
(ad + (a+d) b+c)      …  (B) 
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Proof:  Let L be a lattice containing a sublattice S isomorphic to 
M4 consisting of 1, a, b, c, d, 0.  Then the set of four elements of 
L corresponding to the four elements (a, b, c, d) of M4 satisfy 
the requirements of the theorem. 
 
 Conversely if L contains a set of four elements (a, b, c, d) 
not satisfying (A) then from the Theorem 5.1 we see that the 
triple (e1, e2, e3) is a non-distributive triple, where e1, e2, e3 are 
as defined in the proof of Theorem 5.1.  Further we observe that 
the equalities mentioned in Theorem 5.2 are precisely the 
following equalities. 
 
 ap + eip = p(a+q) (ei+q) = q for i = 1, 2, 3 where 
 p = (e1 + e2) (e2+e3) (e1+e3) and q = e1e2 + e2e3 + e3e1. 
 

Now (q+ap, q+e1p, q+e2p, q+e3p) generate a sublattice 
isomorphic to the lattice of figure 5.1.  For 

 
 q + e1p = e1 (e2 + e3) + e2e3 
 q + e2p = e2 (e1 + e3) + e1e3 
 q+e3p = e3 (e1+e2) + e1e2. 
 
 So the sum of any two of these is p and the product of any 
two of these is q.  Hence they are not equal as p is not equal  
to q. 
 
Also 
   q + ap + q + eip  = q + ap + eip 
        = q+p = p 
   
and 

 (q+ap) (q+eip) = p (q+a) (q+ei) 
          = pq = q. 
 
So ap + q does not equal q + eip for i = 1, 2, 3. 
 
DEFINITION 5.1:   An element a of a lattice L is called modular 
if and only if the sublattice by (a, b, c) for all b, c in L is 
modular. 
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THEOREM 5.3:  An element a of a lattice L is modular if and 
only if 
 

(1) (a+b) (a+c) = a+b (a+c)  for all b, c in L. 
(2) ab + ac = a (b+ac) for all b, c in L. 
(3) a+b = a+c; ab = ac; b  c implies b = c for all 

b, c in L. 
(4) (b+a) (b+c) = b+c (a+b) for all b, c in L. 
(5) ba + bc = b (c+ab) for all b, c in L. 

 
Proof:  Let a be a modular element in a lattice L and let b, c be 
two arbitrary elements of L.  The sublattice S generated by  
{a, b, c} is modular (by definition).  Further all the elements in 
equalities (1) to (5) belong to S.  These equalities are satisfied; 
as S is modular. 
 
 Conversely, let a be an element of a lattice L satisfying 
equalities (1) to (5) and b, c two arbitrary elements in L.  
Consider the sublattice generated by S = {a, b, c} in L. 
 
 First we observe 

if   x  y in S then (a+x)y = ay+x  (6) 
 
For if p = (a+x)y  ay + x = q then 

  a+p = a+q = a+x 
  ap = a+q = a+x 
  ap = aq = ay foreing p = q by   (3) 
 
As particular cases of (6) we obtain 
 (b+a) (b+c) = b+a (b+c)     (4) 
 
 ba + bc = b (a+bc)      (5) 
 
 Next (a+b) (a+c) (b+c) = (a+b (a+c)) (b+c) (by (1)) 
 

= a(b+c) + b(a+c)       (by (6)). 
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Similarly  
 
 (a + b) (a + c) (b + c) = a(b + c) + c(a + b). 
 Next p = (b+ac) (a+c)  (a+c)b + ac = q 
 
 a+p  = a+ (b+ac) (a+c) 
 = (a+b+ac) (a+c)         (by (1)) 
 = (a+b) (a+c). 
 
 a+q = a + (a+c)b 
  = (a+b) (a+c)      (by (1)) 
 
 ap  = a(b+ac) = ab + ac 
 aq  = a((a+c)b+ac) = a(a+c)b + ac 
  = (ab+ac)          (by (2)) 
  
 Therefore a+p = a+q and ap = aq forcing p=q  (by (3)). 
 
 That is 
 (b+ac) (a+c) = (a+c)b + ac    (7) 
 
 Similarly 
 (c+ab) (a+b) = (a+b)c+ ab    (8) 
 
 Also (a+bc) (b+c) = a(b+c) + bc  (by (6)) 
 
 Finally adding (7) and (8) we get 
 (b+ac) (a+c) + (c+ab) (a+b) 
 
 = (a+c)b + (a+b)c 
 
 L.H.S. = (a+c) (b+ac+(c+ab) (a+b))   (by (4)) 
   = (a+c) (b+(c+ab) (a+b))   (ac  (c+ab)  (a+b)) 
   = (a+c) (b+c (a+b) + ab)   (by (8)) 
   = (a+c) (b+c (a+b)) 
   = (a+c) (b+c) (a+b)  (by (4)). 
 
 So (a+c) (b+c) (a+b) = b(a+c) + c(a+b)  (9) 
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 The equalities due to (6) - (9) are got dually.  Hence the 
sublattice generated by {a, b, c} in L is a homomorphic image 
of the free modular lattice generated by (a, b, c); and hence is 
modular. 
 
 As in the case of neutral elements we can show. 
 
THEOREM 5.4: The set of modular elements of a lattice L is the 
intersection of the maximal modular sublattice of L. 
 
Proof:  On the same lines as Birkhoff. 1948. 
 
Corollary 5.2:  The modular elements of any lattice L form a 
modular sublattice of L.  
 



 
 
 
 
 
Chapter Six 
 
 

 
 
SMARANDACHE LATTICES 
 
 
 
 
 In this chapter we for the first time introduce the notion of 
Smarandache lattices and give a few of its properties.  For more 
about lattices please refer [2]. 
 
DEFINITION 6.1: Let L be a lattices; if L has atleast one 
sublattice whose homomorphic image is isomorphic to the 
Boolean algebra of order four (i.e., isomorphic to 
 

 

 

 

then we call L to be a Smarandache lattice (Smar lattice). 
 
 We first illustrate this by some examples. 
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Example 6.1:   Let L be a diamond lattice. 
 
 
 
 
 
 
 
 
 
L is a Smar lattice.  For the sets {0, 1, a, b}, {0, 1, a, c} and {1, 
0, b, c} are sublattices whose homomorphic image is 
isomorphic to the Boolean algebra of order four. 
 
Example 6.2:  Let L be the pentagon lattice given by 
 

 

 

 

  

L is a Smar Lattice for the subsets {0, 1, a, c} and {0, 1, b, c} 
are sublattices of L whose homorphic image is isomorphic to 
the Boolean algebra of order four. 
 
 We see the pentagon lattice has also a sublattice of order 
four given by the set {1, a, b, 0} whose homomorphic image is 
not isomorphic with the Boolean algebra of order four.   
 

Further both the diamond lattice and pentagon lattice have 
only three sublattice of order four, but in case of diamond lattice 
we see all sublattices of order four are isomorphic with the 
Boolean algebra of order four, however in case of pentagon 
lattice we see only two of the sublattices are such that their 
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homomorphic image is isomorphic to the Boolean algebra of 
order four but one sublattice is just a chain lattice of order four. 
 
 It is also interesting to note both the pentagon lattice and the 
diamond lattice are not distributive but both are Smar-lattice. 
 
 We see not all lattices are Smar-lattices.  Infact we have a 
class of lattices which are not Smar-lattices. 
 
THEOREM 6.1:  Let L denote the class of all chain lattices; no 
lattice in L is a Smar lattice.  
 
Proof:  If M in L has to be a Smar-lattice we need a proper 
subset S in M of order four such that S is a sublattice of M and 
S is isomorphic with the Boolean algebra of order four. 
 
 

 

 

 

 
 This is turn implies S in L should be such that, S has two 
distinct elements a, b other than 0 and 1 such a + b = 1 and  
a.b = 0.  
 

In a chain lattice L we know there does not exists distinct 
elements a, b (a  b) a, b  L \ {1, 0} such that a+b = 1 and a.b 
= 0.  So S cannot be a sublattice whose homomorphic image is 
isomorphic with the Boolean algebra of order four. 
 
 We give some examples before we proceed onto define or 
discuss more properties about Smar lattices. 
 
Example 6.3:  Let L be a chain lattice of order six.  L is not a 
Smar lattice. 
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Example 6.4:  Let L be a chain lattice of order n.  L is not a 
Smar lattice. 
 

 

 

 

 

 

 

 

 

Example 6.5:  Let L be a Boolean algebra of order eight given 
by the following Hasse diagram. 
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We see this has six sublattices of order four which are such 
that they are isomorphic with the Boolean algebra of order four.  
These sublattices are {a, b, 0, ab}, {0, b, c, bc}, {ac, bc, c, 1}, 
{1, ab, ac, a}, {0, a, c, ac} and {1, ac, bc, b}. 
 
 In fact L has also sublattices of order four which are chain 
lattices. 
 
 
       and  
 
 
 
 
 
 
 
Example 6.6:    
 

 

 

 

 







 c 

0 

a 

ac 

b 





 bc ab 

1 

 

 

 

 

1 

bc 

 

c 

 

0 









1 

ab 

 

a 

 

0









1 

ac 

 

c 

 

0









1 

ab 

 

b 

 

0









0 

d 





 a 

c 

b 

1 



90 Supermodular Lattices  
  
 
 
 
 
 
 

 Let L be a lattice given by the Hasse diagram.  L is a Smar 
Lattice for some of the subsets S1 = {b, c, d, 0}, S2 = {1, b, a, 
c}, S3 = {1, d, a, 0}, S4 = {1, d, c, 0} are sublattices of L whose 
homomorphic image is isomorphic with a Boolean algebra of 
order four. 
 
 Take P1 = {1, a, c, 0} and P2 = {1, b, d, 0} subsets of L. 
 
 These are also sublattices of L of order four but are not 
isomorphic with chain lattices or order four. 
 
 We now proceed onto prove the following interesting result. 
 
THEOREM 6.2:   If L is a modular lattice then L is a Smar 
Lattice. 
 
Proof:  Given L is a modular lattice, so in L we have triples, a, 
b, c such that the modular law is satisfied.  Thus L has 
sublattices of order five which are isomorphic with the diamond 
lattice say we have S = {a1, b1, c1, d1, e1}  L such that S has 
Hasse diagram, 
 

 

 

 

 
 Now clearly {a1, b1, c1, e1} {a1, c1, d1, e1} and {a1, b1, d1, e1} 
are subsets of S whose homomorphic image is isomorphic to the 
Boolean algebra of order four.  Thus every modular lattice is a 
Smar lattice. 
 
 Now a natural question would be “Is every distributive 
lattice a Smar lattice?” This question is partially answered by 
the following Theorem. 
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THEOREM 6.3:   Every distributive in general is not a Smar 
lattice. 
 
Proof:  We see all chain lattices are distributive.  But none of 
the chain lattice is a Smar lattice.  Hence the claim. 
 
 Next we have a class of distributive lattices which are 
Boolean algebras. 
 
THEOREM 6.4:  Every Boolean algebra of order greater than or 
equal to four is a Smar lattice. 
 
Proof:   Proof follows from the fact every Boolean algebra B is 
isomorphic with {0, 1}  {0, 1} and in this product if we take T 
= {0, 1}  {0, 1} then T is isomorphic with B the Boolean 
algebra of order four. 
 
 Hence every Boolean algebra is a Smar lattice. 
 
Example 6.7:  Let L be a lattice given by the following figure.  
L is a Smar lattice. 
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 Now we proceed onto define the new notion of 
Smarandache sublattices and their generalization. 
 
DEFINITION 6.2:   Let L be a lattice.  If L has a proper 
sublattice P and if P is a Smar lattice then we say P is a 
Smarandache sublattice or Smar sublattice.  That is P is not the 
Boolean algebra of order 4 but contains a Boolean algebra of 
order four as a sublattice. 
 
Example 6.8:   Let L be lattice given by the following figure. 
 
 

 

 

 

Take P = 

 

 

 

 

a sublattice of L.  P is a Smar lattice.  Thus P is a Smar 
sublattice of L. 
 
THEOREM 6.5:   Let L be a lattice.  If L has a proper Smar 
sublattice P then L is a Smar lattice.  
 
Proof:   Given L is a lattice such that P  L, P is a proper subset 
of L and P is a Smar sublattice of L.  Let B be a Boolean algebra 
of order four contained in P, then B is also a subset of L as B  
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P  L so L contains a proper subset which is a Boolean algebra 
of order 4.  So L is a Smar lattice. 
 
 A natural question would be if L is a Smar lattice will L 
always contains a Smar sublattice.  The answer is not true in 
general we prove this by the following theorem. 
 
THEOREM 6.6:  Let L be Smar lattice.  L in general need not 
contain a Smar sublattice. 
 
Proof:  To prove the theorem we have to give a Smar lattice 
which has sublattices but which has no Smar sublattices.  
Consider the Smar lattice which is a diamond lattice. 
 
 Clearly L is Smar lattice as L contains 3 sublattices of order 
four all of them are isomorphic with the Boolean algebra of 
order 4. 
 

 

 

 

Clearly         

   and 

 

 

 

are Boolean algebras of order four.  But L has no sublattice 
which is a Smar sublattice as L has no sublattice of order greater 
than four. 
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 So the diamond lattice is a Smar lattice which has no Smar 
sublattice but has sublattices. 
 
 Likewise consider the pentagon lattice P. 
 
 
 
 
 
 
 
 
 P is a Smar lattice as the sublattices {1, a, b, 0} and {1, a, c, 
0} are such that their homomorphic image is isomorphic to the 
Boolean algebra of order four. 
 
 But clearly the pentagon lattice L has no sublattice which is 
a Smar sublattice of P. 
 
 Hence the claim. 
 
 If a pertinent to show by some examples that we can have 
Smar lattices which has Smar sublattices also. 
 
THEOREM 6.7:   Let L be a lattice of the form Mn, n > 5.  Then 
L is a Smar lattice which Smar sublattices. 
 
Proof:   Given Mn is a modular lattice of the form 
 

 

 

 

 Given n > 5.  So Mn is a Smar lattice for every proper subset 
P = {0, 1, ai, ai+1}  Mn, 1  i  n–2 is a sublattice whose 
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homomorphic image is isomorphic with the Boolean algebra B 
of order 4. 
 
 Thus Mn is a Smar lattice. 
 
 Now consider the sublattices Pi of the form Pi = {0, 1, ai, 
ai+1, ai+2}.  Each Pi is a Smar sublattice 1  i  m, m a suitable 
number. 
 
 Thus this Smar lattice has Smar sublattices.  Thus this class 
of lattices are Smar lattices which has Smar-sublattices. 
 
Example 6.9:   Let M6 be a lattice given by the following figure. 
 

 

 

 

 L is a Smar lattice and L has Smar-sublattices. 
 
 Now we define those Smar lattices which has no Smar 
sublattices as simple Smarandache lattices. 
 
DEFINITION 6.3:   Let L be a lattice which is a Smar lattice if L 
has sublattices but no Smar sublattices then we call L to be a 
Smarandache simple lattice (Smar simple lattice) or (Simple 
Smar lattice). 
 
Example 6.10:  The diamond lattice. 
 
 
 
 
 
 
is a simple Smar lattice. 
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Example 6.11:  Let L be the lattice given by the following 
diagram.  L is a simple Smar lattice. 
 

 

 

 

 

 
L is a Smar-Lattice which is a simple Smar lattice. 

 
Example 6.12:  Let L =  
 
 

 

 

 

 
be a lattice given by the figure. 
 
 L is a simple Smar lattice.   
 
 Next we proceed onto define Smar strong lattices. 
 
DEFINITION 6.4:  Let L be a lattice if L has a sublattice whose 
homomorphic image is isomorphic to a Boolean algebra of 
order at least eight then we call L to be a Smarandache strong 
lattice (S-Smar lattice).   
 

We now proceed onto give a few examples of it. 
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Example 6.13:  Let L be a lattice given by the following figure. 
 

 

 

 

 

  

Clearly L is a S-Smar lattice.  L is not distributive.  L is not 
modular.  L is also a Smar lattice. 
 
Example 6.14:  Let L be a lattice given by the following figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 We see L is a S- Smar lattice (Smar strong lattice).  
 We have the following interesting. 
 
THEOREM 6.8:   Every S-Smar lattice is a Smar lattice but a 
Smar-Lattice is not in general a S-Smar lattice. 
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Proof:  Suppose L is a S-Smar lattice (Smar strong lattice) then 
clearly L has a sublattice.  P whose homomorphic image is 
isomorphic to a Boolean algebra of order 8. 
 
 Now every Boolean algebra of order eight has a sub 
Boolean algebra of order four.  Hence L has a sublattice of order 
four, whose homomphic image is isomorphic with a Boolean 
algebra of order four.  Thus L is a Smar lattice. 
 
 Now to show a Smar lattice in general is not a Smar strong 
lattice we give a example. 
 
 Consider a Smar lattice L given by the following figure. 
 
 
 
 
 
 
 
 
 
 
 
L is a Smar lattice, which is clearly not a Smar strong lattice.  
Since order of L is itself seven. 
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Chapter Seven 
 
 

 
 
GB-ALGEBRAIC STRUCTURES 
 
 
 
 
 In this chapter we for the first time introduce a new 
algebraic structure which is not a field or a ring or a near ring or 
a group ring or a semigroup ring or a lattice or a Boolean 
algebra or a semiring or a semifield or a vector space or a linear 
algebra. 
 
 This is like a linear algebra having two separate algebraic 
structures combined in a nice mathematical way. 
 
 For constructing this algebraic structure we need a group G 
and a Boolean algebra B.  Just as group ring are defined we 
define group Boolean algebra and this new algebraic structure is 
known as GB-algebraic structures. 
 
DEFINITION 7.1:  Let G be a group and B = (B, +, , 0, 1) be a 
Boolean algebra.  The group Boolean algebra of the group G 
over the Boolean algebra B consists of all finite formal sums of 
the form i i

i

b g  (i- runs over a finite number) where bi  B and 

gi  G satisfies the following conditions. 
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 i. 
n n

i i i i
i 1 i 1

b g c g
 

    if and only if bi = ci for i = 1, 2, …, n, 

 gi  G. 
 

 ii. 
n n n

i i i i i i i
i 1 i 1 i 1

b g c g ( b c )g
  

     ; gi  G. 

 

 iii. 
  

     
   
  i i j j k k

i j k

b g g m   

where k = bi j, gigj = mk  G where gi, gj  G and  
bi j, k  B. 

 
iv. bigi = gibi  for all bi  B and gi  G.  
 

v. 
n

i i i i
i 1

b b g ( bb )g


  for bbi  B and bigi  BG. 

 
BG is a new special algebraic structure defined as the GB 

algebraic structure.  0  B acts as the additive identity of GB.  
Since 1  B we have G = 1.G  BG and B.e = B  BG where e 
is in identity element of G. 

 
We denote 1.e = 1.1 = 1 which is the multiplicative identity 

of BG. 
 
Remark 7.1:  We see BG is not any of the known algebraic 
structures.  It is not a Boolean algebra as G  BG.  BG is not a 
group as BG is not a ring as we do not have inverse elements 
under addition.  So BG is the special GB-algebraic structure. 
 
 We give some examples before we proceed on to define 
more properties about the GB-algebraic structures. 
 
Example 7.1:  Let B = {0, 1} be the Boolean algebra of order 
two.   G = g | g3 = 1 be the cyclic group of order three.  BG be 
the GB-algebraic structure. 
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 BG  = {0, 1, g, g2, 1+g, 1+g2, …, 1+g+g2}. 
 
 We see (g + g2) + (g + g2) = g + g2 as1 + 1 = 1 in B. 
 
 (1 + g + g2)  + (g + g2)  =  1 + (g + g2) + (g + g2) 
       = 1 + g + g2. 
 
 g + g2 + g    = g2 + g 
 (as g + g = g) 
 (1 + g + g2) (1 + g)  = 1 + g + g2 + g + g2 + 1 
       = 1 + g + g2 
 g2  (1 + g)    = g2 + 1  and so on. 
 
 We see BG has eight elements and every element x in BG is 
such that x + x = x. 
 
 But every element x in BG need not in general be such that 
x.x = x 
 
 For take x = g + g2 ;  x.x = (g + g2) (g + g2) 
       = g2 + 1 + 1 + g 
       = 1 + g +  g2    g + g2. 
 
 Hence the claim. 
 
 Thus BG is not a Boolean algebra.   
 

Further as (1 + g + g2) (1 + g + g2) 
 = 1 + g + g2 we see BG is not a group.   

 
Also 0  BG so BG is not a group. 

 
Example 7.2:   Let B = {0, 1} be a Boolean algebra of order 
two and G = g | g2 = 1.  Then BG = {0, 1, g, 1 + g} be the 
group Boolean algebra.  Here (1 + g) (1 + g) = 1 + g so BG is 
not a group.  As g.g = 1, BG is not a Boolean algebra.  But B  
BG and G  BG. 
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Example 7.3:  Let B = {0, 1} be the Boolean algebra of order 
two and G = S3 be the symmetric group of degree three.  Then 
BG is a GB-algebraic structure where BG = {0, 1, p1, p2, p3, p4, 
p5, 1+p1, …, 1+p5, …, p4 + p5, …, 1 + p1 + p2 + p3 + p4 + p5}.  
Clearly BG has 26 elements.  We see their exists x, y  BG such 
that xy  yx.  For p4. p2  p2. p4 where p2. p4  BG. 
 
 In view of this we make the following definition. 
 
DEFINITION 7.2:  Let BG be a GB-structure where B is a 
Boolean algebra and G is a group.  If in BG for every x, y  BG 
we have xy = yx then we call the GB-algebraic structure to be 
commutative.  If BG has atleast one pair of elements x, y such 
that xy  yx then we say the GB-algebraic structure is non 
commutative. 
 
 The examples 7.1  and 7.2 are commutative GB-algebraic 
structures where as example 7.3 is a non commutative GB-
algebraic structure.   
 

We give the following interesting theorem. 
 
THEOREM 7.1:  Let B be any Boolean algebra.  BG the GB-
algebraic structure is commutative if and only if G is a 
commutative group. 
 
Proof:   Given BG is the GB-algebraic structure so B  BG and 
G  BG where B is the Boolean algebra and G is a group.  
Suppose BG is commutative then we know G  BG so G is a 
commutative group. 
 
 Now if G is a commutative group then we see from the very 
definition of the GB-algebraic structure.  GB is a commutative 
algebraic structure. 
 
Corollary 7.1:  GB is a non commutative algebraic structure if 
and only if G is a non commutative group. 
 
 



GB Algebraic Structures 103 
 
 
 
 
 
 
 

Proof:  Similar to the theorem 7.1. 
 
Example 7.4:  Let B = {0, a, b, 1} be the Boolean algebra of 
four elements. 
 
 
 
 
 
 
 
 
 

a+b = 1   a.b = 0   a.a = a   b.b = b. 
 
 Let G = g | g2 = 1 be the cyclic group of order two.   
BG = {0, 1, a, b, g, ag, bg, 1 + g, a + g, b + g, 1 + ag, 1 + bg,  
b + ag, bg + a, a + ag, b + bg}. 
 
 The GB-algebraic structure is commutative and has 16 
elements. 
 
 b.ag = 0 and (a+ag) (b+bg) = 0.  Thus we see the algebraic 
structure has zero divisors. 
 
 Also (a+bg) (ag + b)  = a.ag + bg.ag + a.b + b.bg 
       = ag + 0 + 0 + bg 
       = (a+b)g = 1.g = g. 
 
 Thus it is interesting to see that the group element g in G is 
got as a product of two distinct elements from BG \ G. 
 
DEFINITION 7.3:  Let BG be the group Boolean algebra (GB-
algebraic structure) of the group G over the Boolean algebra B.  
We say x  0 is a zero divisor in BG if there exists a y  BG \ 
{0} such that x.y = 0. 
 
Example 7.5:   Let B = {0, a, b, c, d, e, f, 1} be the Boolean 
algebra of order 8 given by the following figure. 







 b 

0 

a 

1 
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Let G = g | g2 = 1 be the cyclic group of order two.   
BG = {0, 1, a, b, c, d, e, f, g, ag, bg, cg, dg, eg, fg, …, 1+g, 
1+ag, 1+bg, …, 1+fg, a + g, b + g , …, f + g, a + ag, b + bg , …, 
f + fg, a + bg, a + cg , …, a + fg, b + ag, b + cg , …, b + fg,  
c + ag, c + bg , …, c + fg, d + ag, d + bg , …, d + fg, e + ag,  
e + bg , …, e + fg, f + ag, f + bg , …, f + fg}, o(BG) = 64 = 82. 

 
We see BG has zero divisors and idempotents. 
 
We prove the following interesting theorem. 

 
THEOREM 7.2:  Let G be any finite group.  B = {0, 1} be the 
Boolean algebra of order two.  BG has no zero divisors but has 
non trivial idempotents. 
 
Proof:   Since B = {0, 1} has no elements x, y such that x.y = 0, 
x, y  B \ {0} we see in BG no element x  0 in BG has a y in 
BG \ {0} such that x.y = 0. 
 
 Further 1 + g + g2 + … + gt–1  BG where t / o(G) and is 
such that gt = 1 is an idempotent in BG for (1 + g + … + gt–1)  
(1 + g + … + gt–1) = 1 + g + … + gt–1 as 1 + 1 = 1 in B. 
 
 Hence the claim. 
 
Example 7.6:  Let B = {0, 1} be the Boolean algebra of order 
two and G = g | g9 = 1 be cyclic group of order nine.  Now BG 
be the GB-algebraic structure.  Take x = 1 + g + … + g8 in BG 
x2 = (1 + g + … + g8)2 = (1 + g + … + g8). 
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 Further x.y  0 for any x, y  BG \ {0} 
 
 Also that (1 + x3 + x6) (1 + x3 + x6)  

= 1 + x3 + x6 + x3 + x6 + 1 + x6 + 1 + x3 
   = 1 + x3 + x6. 
 
 Hence the claim. 
 
 (1 + x + x2) (1 + x + x2) 
   = 1 + x + x2 + x + x2 + x3 + x2 + x3 + x4 
   = 1 + x + x2 + x3 + x4. 
 
THEOREM 7.3:  Let G be a group of finite order.  B = {0, 1} be 
the Boolean algebra of order two.  BG has non trivial 
idempotents. 
 
Proof:  Let o(G) = n and G = {1, g1, g2, …, gn–1) where each gi 
is distinct (i.e., gi = gj and only if  i = j, 1  i, j  n–1).  Take  
x = 1 + g1 + … + gn–1 in BG.  We see x2 = (1 + g1 + … + gn–1)

2 =  
1 + g1 + … + gn–1 i.e., x is an idempotent in BG hence the claim. 
 
Example 7.7:   Let G = S3 be the symmetric group of degree 
three group and B = {0, 1} be the Boolean algebra of order 2.  
BG be the GB-algebraic structure. 
 
 x = 1 + p1 + … + p5 in BG is such that x2 = x. 
 
Example 7.8:  Let G = D2.6 = {a.b | a2 = b6 = 1, bab = a} = {1, a, 
b, b2, …, b5, ab, ab2, ab3, ab4, ab5} be the dihedral group of order 
six.  B = {0, 1} be the Boolean algebra of order two.  BG be the 
GB-algebraic structure. 
 
 Take x = 1 + b + b2 + … + b5  BG; x2 = x; y = 1+ab2  
BG is such that y2 = (1+ab2)2 
  = 1 + ab2 + ab2 + ab2ab2 
  = 1+ab2 + ab2 + 1 
  = 1 + ab2. 
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BG has atleast 8 idempotents.  However it can be easily 
verified that BG has no zero divisors. 
 
Example 7.9:   Let G = S3 be the symmetric group of degree 
three i.e., G = S3 = {1, p1, p2, …, p5} and B = {0, a, b, 1} be the 
Boolean algebra of order four.  BG the GB-algebraic structure.  
BG has both non trivial zero divisors and nontrivial 
idempotents. 
 
 Take (ap1 + ap2)  (bp1 + bp2) 
  = ab 2

1p  + abp1p2 + ab 2
2p  + abp2p1 

  = 0 + 0 + 0 + 0. 
 
 Thus ap1 + ap2, bp1 + bb2  BG is a zero divisor in BG.  
 Also (1 + p4 + p5) (1 + p4 + p5) 
 = 1 + p4 + p5 in BG. 
 
 (a + bp1 + cp2) (b + cp1 + ap2) 
 = 0 + bp1 + 0.p2 + 0.p1 + 0.p1 + cp2 p1 + ap2  + 0 p1p2 + 0 2

2p  

 = bp1 + ap2 + cp4  BG. 
 
 We see every product in BG does not in general lead to zero 
divisor in BG.   
 

Now we proceed onto define GB-sub algebraic structures. 
 
DEFINITION 7.4:  Let G be a group and B be a Boolean 
algebra.  We say BG the group Boolean algebra has a GB-sub 
algebraic structure S if S contains a proper subset H such that 
H is a subgroup of G and a proper subset T in S such that T = B 
or T is a subBoolean algebra of B or if S contains G as a proper 
subset but B  S only a proper subset T of S which is a sub 
Boolean algebra of B; i.e., T  B and T  B. 
 
 We illustrate this by the following examples. 
 
Example 7.10:   Let B = {0, 1} be the Boolean algebra of order 
two.  G = D2.6 be the dihedral group of order 12.  BG be the GB-
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algebraic structure.  Take S = {0, 1, b, b2, b3, b4, b5, 1+b, 1+b2, 
1+b3, 1+b4, 1+b5, b+b2, b+b3, b+b4, b+b5, b2+b3, b2+b4, b2+b5, 
b3+b4, b4+b5, b3+b5, 1+b+b2, …, 1+b+b2+b3+b4+b5}  BG is a 
sub GB-algebraic structure as B = {0, 1}  S and H = {1, b, b2, 
…, b5}  S.  Infact BG has several GB-sub algebraic structures, 
like T1 = {0, 1, ab, 1+ab}, T2 = {0, 1, a, 1+a} and Ti = {1, abi, 0, 
1+abi; 1  i  5}; i = 1, 2, …, 5. 
 
THEOREM 7.4:   Let G = g | gp = 1 be a cyclic group of prime 
order and B = {0, 1} be the Boolean algebra of order two.  
Then BG the GB-algebraic structure has no proper GB 
algebraic sub structures. 
  
Proof:   Given G is a cyclic group of prime power order, so G 
has no proper subgroup.  Further B = {0, 1} is a Boolean 
algebra of order two so B has no proper subalgebra.  
 
 So the GB-algebraic structure BG has no proper GB-sub 
algebraic structures.  Thus we have a large class of GB-
algebraic structures which has no GB-algebraic sub structures, 
given by BG where B = {0, 1} and G a cyclic group of prime 
order. 
 
 We illustrate this situation by the following examples. 
 
Example 7.11:   Let G = g | g7 = 1 be a cyclic group of order 7 
and B = {0, 1} be a Boolean algebra of order two.  BG = {0, 1, 
g, …, g6, 1+g, 1+g2, …, 1+g+g2 + g3 + g4 + g5 + g6} be the 
group Boolean algebra of B over G.  BG has no proper GB-
algebraic sub structure.   
 
 Another natural question would be can we characterize BG-
algebraic structures which has proper sub GB-algebraic 
structure.  The answer is yes which is given in the form of the 
following theorem. 
 
THEOREM 7.5:  Let G be a group having proper subgroups and 
B be any Boolean algebra.  Then BG the GB-algebraic 
structure has proper GB-algebraic substructure. 
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Proof:  Given G has proper subgroups.  BG be the GB-algebraic 
structure.  Let H  {e} be proper subgroup of G.  BH is a GB-
algebraic structure and clearly BH  BG. 
 
 Hence the claim. 
 
THEOREM 7.6:  Let G be any group.  B a Boolean algebra of 
order greater than or equal to four.  Then BG the GB-algebraic 
structure has proper GB-algebraic substructures. 
 
Proof:   Given G is any group and B a Boolean algebra of order 
greater than or equal to four, so B contains T = {0, 1} as a 
proper Boolean subalgebra. 
 
 Now TG is a GB-algebraic substructure which is properly 
contained in BG; hence the claim. 
 
Example 7.12:   Let B = {0, a, b, 1} be a Boolean algebra, G = 
A4, the alternating subgroup of the symmetric group S4.  BG is 
the GB-algebraic structure.  Now take T = {0, 1}, TA4 is a GB-
algebraic structure contained in BG.  So BG has GB-algebraic 
substructure.  
 
Example 7.13:  Let G = g | g17 = 1 be the group of order 17.  B 
= {0, a, b, 1} be the Boolean algebra of order four.  BG be the 
GB-algebraic structure.  Take T = {0, 1}, TB is a GB-algebraic 
structure such that TB  GB so BG has GB-algebraic 
substructures. 
 
 Now we define a new notion. 
 
DEFINITION 7.5:   Let B be a Boolean algebra and G be any 
group.  BG be the GB-algebraic structure.  If BG has no GB-
algebraic substructure then we call BG to be a simple GB-
algebraic structure.   
 
 We have a class of simple GB algebraic structures.  Take  
B = {0, 1} to be the Boolean algebra of order two and  
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G = g | gp = 1; p a prime; BG the group Boolean algebra is a 
simple GB-algebraic structure. 
 
 We also have a class of GB-algebraic structure which are 
not simple GB-algebraic structure.  Take G be a group of any 
finite order n, n a composite number.  B be any Boolean algebra 
then BG the GB-algebraic structure is not a simple GB-
algebraic structure. 
 
 Now we give some more illustrations. 
 
Example 7.14:   Let G = g | g31 = 1 and B = {0, 1} be the 
group of order 31 and the Boolean algebra of order two 
respectively.  Then BG the GB-algebraic structure is simple.  
Further BG has no zero divisors.  o(BG) = 231.   
 

Also (1 + g + … + g31)2 = (1 + g + … + g31) i.e., BG has no 
trivial idempotents.  Now take (1+g) . (g2 + g4) = g2 + g4 + g3 + 
g5 where 1 + g, g2 + g4  BG. 
 
 Take g + g2 and g2 + g7 in BG.  Consider (1 + g2) (g2 + g7) = 
g2 + g4 + g9 + g7.   
 

Suppose 1 + g + g2 + g3 + g7, g2 + g5 + g + g11  BG. 
 
 Consider their product 
 
 (1 + g + g2 + g3 + g7) (g2 + g5 + g + g11) = g2 + g3 + g4 + g5 + 
g9 + g5 + g6 + g7 + g8 + g12 + g + g2 + g3 + g4 + g8 + g11 + g12 + 
g13 + g14 + g18 = g + g2 + g3 + g4 + g5 + g6 + g7 + g8 + g9 + g11 + 
g12 + g13 + g14 + g18. 
 
 Now we define one more new concept. 
 

DEFINITION 7.6:   Let BG = 



 i i

i

b g  bi  B and gi  G} be the 

GB-algebraic structure of the group G over the Boolean 
algebra B. 
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 Let  =   bgg   BG we define content of  denoted by 
cont = {g  G | bg  0}.   Clearly cont is a finite subset of G. 
 
 If we have  in BG to be central in BG and if x  cont .  If 
y  G then xy = y–1 xy  cont y–1 xy  cont y–1 y = cont. 
 
 Since cont  is finite we have only a finite number of 
distinct xy with y  G. 
 
 It is interesting to study the set of elements x  G with this 
property. 
 
 We see for    BG where  =  bgg  and  =  ch h,  h, g 
 G and bg, ch  B the cardinality of cont  and cont  is such 
that |cont | |cont  | | cont |. 
 
 We first illustrate this by some simple examples. 
 
Example 7.15:  Let G = S3 = {1, p1, p2, p3, p4, p5} be  the 
symmetric group of degree three and B = {0, 1} be the Boolean 
algebra of order two.  BG the GB-algebraic structure. 
 
 Let  = {p1 + p2 + p3}  and  = 1 + p4 be in BG. 
 
 We see content of  = {p1, p2, p3} and  

content of  = {1, p4}.   
 
Now   = (p1 + p2 + p3) (1 + p4) 

  = p1 + p2 + p3 + p3 + p1 + p2 
  = p1 + p2 + p3. 
 

Thus content of  = {p1, p2, p3} and |cont  | = 3 but  
|cont  | |cont | = 3.2 = 6. 

 
Hence we see |cont |  |cont | |cont |. 

 



GB Algebraic Structures 111 
 
 
 
 
 
 
 

Example 7.16:  Let G = g | g10 = 1 be the cyclic group of order 
10 and B = {0, 1} be the Boolean algebra of order two BG be 
the GB-algebraic structure. 
 
 BG = {0, 1, g, g2, …, g9, 1+g, …, 1+g9, g+g2, …, g8+g9, …, 
1+g + … g9}. 
 

Take  = {1 + g + g2 + g3 + g4} and  = {g + g5 + g6 + g7 + 
g8} in BG. 
 
 Now cont  = {1, g, g2, g3, g4} 
 |cont | = 5.  cont  = {g, g5, g6, g7, g8}; |cont | = 5 
 
   = (1 + g + g2 + g3 + g4) (g + g5 + g6 + g7 + g8) 
 
   = g + g2 + g3 + g4 + g5 + g6 + g7 + g8 + g9 + g6 + 

g7 + g8 + g9 + 1 + g7 + g8 + g9 + 1 + g + g8 + g9  
+ 1 + g + g2 

 
   = 1 + g + g2 + g3 + g4 + g5 + g6 + g7 + g8 + g9. 
 
 Cont  = {1, g, g2, …, g9} and |cont | = 10. 
 
 Thus |cont |  |cont | |cont |. 
 
Example 7.17:   Let G = {g | g6 = 1} be the cyclic group of 
order 6 and B = {0, a, b, 1} be the Boolean algebra of order 
four.  BG = {0, a, b, 1, g, g2, …, g5, ag, ag2, …, ag5, bg, bg2, …, 
bg5, …, 1 + g + g2 + g3 + g4 + g5, a + ag + ag2 + ag3 + ag4 + ag5, 
b + bg + bg3 + bg4 + ag5} be the GB-algebraic structure. 
 
 Take  = a + ag + … + ag5 and  = b + bg + … + bg5 in 
BG. 
 
 Cont   = {1, g, g2, g3, g4, g5} = G and |cont | = |G| = 6. 
 
 Cont  = {1, g, g2, …, g5} = G and |cont | = |G| = 6. 
 
 We find . 
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   = (a + ag + … + ag5) (b + bg + … + bg5) = a (1 + 
g+…+g5) b (1 + g + … + g5) = ab (1 + g + …+ g5)2 = ab (1+g + 
g2 +…+g5) = 0  as a.b = 0 in B. 
 
 Thus  = , |cont | = 0. 
 
 We see |cont |  |cont | |cont |. 
 
 Let  = (1 + g2 + g4) and  = (b + bg2 + bg4) in BG we see 
 Cont  = {1, g2, g4} and |cont | = 3. 
 Cont  = {1, g2, g4} and |cont | = 3. 
 
  = (1 + g2 + g4) (b1 + bg2 + bg4) 
  = b + bg2 + bg4 + bg2 + bg4 + bg4 + bg6 + bg6 (g6 = 1) 
  =  b + bg2 + bg4 
 
 Cont  = {1, g2, g4} and |cont | = 3 
 Thus |cont |  |cont | |cont |. 
 
 We see  =  in this case.  We cannot say  =  can be 
simplified as  –  = 0 or (–1) = 0 as in GB-algebraic 
structure the notion of – for any   BG does not have any 
meaning as B is a Boolean algebra. 
 
 Now before we prove | cont |  |cont | |cont | we first 
prove in case of finite groups G we have |cont | |cont |   
|G| |G| and |cont | can be 0. 
 
 Thus we have 0  |cont |  |cont | |cont |  |G| |G|. 
 
THEOREM 7.7:  Let G be any finite group.  B = {0, 1} be the 
Boolean algebra of order two.  BG the GB-algebraic structure.  
Let ,   BG be such that cont    and cont    then  
cont   ,  
 

i.e., if |cont |   and |cont |   then |cont |  . 
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Proof :  Given B = {0, 1} is a Boolean algebra of order two and 
G a finite group with ,   BG such that |cont |   and  
|cont |  .  Now in cont  we see no term can vanish as 0, as 
B has no zero divisor coefficient terms in  and  (i.e., cont  
and cont  remain as non zero).  So cont   {0}. 
 
 Hence |cont |   in case B is a boolean algebra of order 
two. 
 
 Now we cannot assert in this way in case of Boolean 
algebras of order greater than two for these Boolean algebras B 
always have complements of elements in B such that their 
product is always zero. 
 
 We first illustrate this by an example before we prove any 
result in this direction. 
 
Example 7.18:  Let G = g | g8 = 1 be the cyclic group of order 
eight and B = {0, a, b, c, d, e, f, 1} be a Boolean algebra of 
order eight. 
 
 Let BG be the GB-algebraic structure.  We can have ,   
BG with |cont |  0 and |cont |  0 but |cont | = 0. 
 
 For take B to be the Boolean algebra given by the figure. 
 
 
 
 
 
 
 
 
 
 
 
 We have a.b = 0 = b.c = a.c = d.c  = e.b = f.a. 
 
 Let  = ag + a and  = bg2 + bg + bg3 + fg5 + f be in BG. 







 c 

0 

a 

e 

b 





 f d 

a 
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 Clearly cont  = {1, g}, |cont | = 2, cont  = {1, g, g2, g3, 
g5} and |cont | = 5. 
 
 Now  = (ag + a) (bg2 + bg + bg3 + fg5 + f) = abg4 + abg2 
+ bag2 + abg + abg4 + abg3 + afg6 + afg5 + afg + af = 0 as ab = 
fa = 0. 
 
 Cont  =  so |cont | = 0. 
 
 Thus in the case of Boolean algebras of order greater than 
two we can  have |cont | = 0 without |cont | = 0 and |cont | 
= 0. 
 
 We see some more interesting properties about cont ,   
BG. 
 
 Let ,   G where BG is a GB-algebraic structure  
|cont | + |cont |  |cont (+)|.   
 

We first illustrate this by the following examples. 
 
Example 7.19:  Let G be the finite dihedral group D2.6 and  
B = {0, 1} be the Boolean algebra of order two. BG be the GB-
algebraic structure. 
 
 D2.6 = {1, a, b, b2, …, b5, ab, ab2, …, ab5} be the given 
Dihedral group. 
 
 BG = { igi; i  B and gi  D2.6} be the GB-algebraic 
structure. 
 
 Let  = a + b + ab3 + ab5 + b2 and  = a + ab2 + ab3 + b2 + 
b5 + b3  be elements of BG. 
 
 Now cont = {a, b, ab3, b2, ab5} so |cont| = 5 and  
cont = {a, ab2, ab3, b2, b5, b3, b} so that |cont| = 7. 
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Now + = (a + b + ab3 + ab5 + b2 + a + ab2 + ab3 + b2 +  
 b5 + b3 + b 

    = a + b + ab2 + ab3 + b2 + b3 + ab5. 
 

cont (+) = {a, b, ab2, ab3, b2, b3, b5, ab5}  and  
|cont (+)| = 8. 
 

|cont (+)|  |cont | + |cont |. 
 
Example 7.20:  Let G = g | g11 = 1 be the group of order 11 
and B = {0, a, b, 1} be the Boolean algebra of order four.  BG 
be the GB-algebraic structure.   
 

Let  = (1 + g + g10 + g2 + bg3 + g4 + ag5 + bg6 + g7 + g8 + 
bg9)  and  
 

 = (a + bg + g2 + ag3 + bg4 + g5 + ag6 + bg7 + g8 + bg9 + 
ag10) be take from BG.  Now cont = {1, g, g10, g2, g3, g4, g5, g6, 
g8, g7, g9} cont = {1, g, g2, g3, g4, …, g10}.   

 
We see |cont | = |cont | = 11 = |G|. 
 

 Now + = (1 + g + g2 + bg3 + g4 + ag5 + bg6 + g7 + g8 + 
bg9 + ag10) 
 
 (a + bg + g2 + ag3 + bg4 + g5 + ag6 + bg7 +g8 + bg9 + ag10) = 
(1+a) + (a+b)g +  (1+1)g2 + (b+a)g3 + (1+b)g4 + (a+1)g5 + 
(b+a)g6 + (1+b)g7 + (a+1)g8 + (b+b)g9 + (a+a)g10) 
 
 = 1 + g + g2 + g3 + g4 + g5 + g6 + g7 + g8 + bg9 + ag10. 
 
 Cont + = {1, g, g2, g3, …, g10} 
 
 Thus |cont +| < |cont | + |cont |. 
 
 Now it is interesting to see |cont +|  0 if |cont |  0 (or) 
|cont |  0; for in a Boolean algebra B if a, b  B \ {0};  
a+b  0. 
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 We further see |cont (+)| is always less than or equal to 
order of G. 
 
 Thus o(G)  |cont (+)|  |cont | + |cont |  2 o(G) = 
2|G|. 
 
 The proof of the above inequality is left as an exercise for 
the reader.   
 

Now we proceed onto define the notion of invariant and 
universally invariant elements of the GB-algebraic structure. 
 
DEFINITION 7.7:  Let G be any group of B be any Boolean BG 
the GB-algebraic structure.   BG is said to be invariant in 
BG if there exists a   BG\ {0} such that . = . 
 
 If   BG is such that . =  for all   BG \ {0} then we 
say  is an universally invariant element of BG. 
 
 It is interesting to see 0  BG is an universally invariant 
element of BG. 
 
THEOREM 7.8:  Let BG be a GB-algebraic structure where  
B = {0, 1} is a Boolean algebra of order two and G any group. 
 
 If   BG is universally invariant element of BG, then  is 
an invariant element of BG.  Further an invariant element of 
BG in general is not an universally invariant element of BG. 
 
Proof:  From the very definition of the universally invariant and 
invariant element of BG we see every universally invariant 
element of BG is an invariant element of BG. 
 
 To prove that converse we give an example. 
 
 Take G = D2.9 = {1, a, b | a2 = b9 = 1, bab = a} to be the 
dihedral group of order 18 and B = {0, 1} the Boolean algebra 
of order two.  BG be the GB-algebraic structure. 
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 Take  = 1 + b + b2 + … + b8 in BG.  Now there is a  = 1 
+ b3 + b6  BG such that  = . 
 
 Take  = a + b in BG.   
 

Now  = (1 + b + b2 + b3 + … + b8) (a + b) 
 
 =  a + ba + b2a + b3a + … + b8a + b + b2 + b3 + b4 + … + 

b8 + 1. 
 
 Clearly   .  Thus  is not a universally invariant 
element of BG. 
 
 Take  = {1 + a + b + … + ab8 + ab + ab2 + … + ab8} in 
BG.  We see  =  for every  = BG \ {0}.  This  is a 
universally invariant element of BG.  0  BG is also universally 
invariant element of BG as 0. = 0 for every   BG. 
 
 It is pertinent to mention here that when B is any other 
Boolean algebra of higher order say (|B|  4) then we cannot say 
BG will contain universally invariant elements other than zero.   
However we may have invariant elements.  
 
Example 7.21:  Let G = g | g4 = 1 be the cyclic group of order 
four.  B = {0, a, b, 1} be the Boolean algebra of order four.  Let 
BG be the GB-algebraic structure.  Let  = 1 + g + g2 + g3.   is 
an invariant element of BG but  is not an universally invariant 
element of BG for it we take  = ag + bg2. 
 
 We see    .  But 
 . (g+g2) =  
 
 (1+g) =  and 
 (1+g+g2) =  and so on. 
 
 The following problems are left open for an innovative 
reader to solve. 
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Problem 1:  If   B is an universally invariant element of BG 
(where B = {0, 1}) and G is a finite group does it imply cont  
is order of G. (G a finite group). 
 
Problem 2:   Is it possible for BG to have a universally 
invariant elements if |B|  4? 
 
THEOREM 7.9:  Let G be an abelian group such that H is a 
proper finite subgroup of G. 
 
 B = {0, 1} be a Boolean algebra of order 2.  Let BG be the 
GB-algebraic structure.  Then   BG such that cont = H is a 
invariant element of BG. 
 
Proof:   Let H be the finite subgroup of G, say H = {1, h1, …, 
ht}  G.  Take  = (1 + h1 + … + ht)   BG is an invariant 
element of G as . =  for every    BG \ {0}) with cont  
  H. 
 
 Hence the claim. 
 
 Now we are interested in studying whether the GB-
algebraic structure BG contains any other universally invariant 
elements other than  = 1 + g1 + … + gn where G = {1, g1, …, 
gn} and B = {0, 1}. (0  BG is trivially universally invariant 
element of BG as 0.  = 0 for all   BG). 
 
Example 7.22:   Let G = D2.7 = {a, b | a2 = b7 = 1; bab = a} be 
the dihedral group of order 14.  B = {0, 1} be the Boolean 
algebra of order two BG the GB algebraic structure BG has 
atleast one universally invariant element and atleast eight 
invariant elements. 
 
 Let x = i

ix

g  BG with cont  = G.  Then  is a 

universally invariant element of BG.  Let S1 = 1 + a, S2 = 1+ab, 
S3 = 1 + ab2, S4 = 1+ab3, S5 = 1 + ab4, S6 = 1 + ab5, S7 = 1 + ab6 
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and S8 = 1 + b + b2 + b3 + b4 + b5 + b6 we see (1+a)a = 1+a = S1 
so is invariant. 
 
 (1+ab) (ab) = 1 + ab so S2 is invariant.  Likewise we can 
show these eight element in BG are invariant elements of BG.  
It is left for the reader to find other invariant elements of BG. 
 
DEFINITION 7.8:  Let G be a non commutative group and B any 
Boolean algebra.  Let BG be the GB-algebraic structure.  We 
define center of BG denoted by C(BG) = {x  BG / x  =  x 
for all   BG}. 
  
Example 7.23:   Let G = S3 be the symmetric group of degree 
three and B = {0, 1} be the Boolean algebra of order two. 
 
 C(BG) = {0, 1, 1+p1 + p2 + p3 + p4 + p5, 1 + p4 + p5, p1 + p2 
+ p3, 1 + p1 + p2 + p3, p1 + p2 + p3 + p4 + p5,  p4 + p5}  
 
 We see o(BG) = 26 where as o(C(BG)) = 23.  Further C(BG 
is a GB-subalgebraic structure of BG. 
 
 Let G be a commutative group B any Boolean algebra BG 
be the GB-algebraic structure.  Clearly C(BG) = BG we know if 
G is a non commutative group then C(BG)  BG.   
 

Now we find out whether C(BG) has any nice algebraic 
structure.  To be more precise.  Can C(BG) be a GB-algebraic 
substructure of BG? 
 
 In view of this we define the following new notion. 
 
DEFINITION 7.9:  Let G be any group and B a Boolean algebra.  
BG the GB-algebraic structure.  Let P be a proper subset of the 
BG.  We say P is a GB-algebraic pseudo substructure if the 
following condition are true.   
 

(1)  0, 1  P,   
(2)  for every ,   P;  +   P,  
(3) for every ,   P;  and   P. 
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THEOREM 7.10:  Let G be a group.  B a Boolean algebra.  BG 
be the GB-algebraic structure.  C(BG) be the center of BG.  
C(BG) is a GB-algebraic pseudo substructure of BG. 
 
Proof:  Let C(BG) = {  BG/ x  =  x for all x  BG} be the 
center of BG.  To prove C(BG) is a GB-algebraic pseudo 
substructure.  Clearly 0, 1  C(BG). 
 
 Take ,   C(BG); to show  +   C(BG).  Given  x = 
x  and  x = x  for all x  BG.   
 

(+) x = x + x = x  + x  
   = x(+).  So  +   C(BG) 
 
 Let ,   C(BG) to show   C(BG). 
 
 Now to show ()x = x () for all x  BG. 
 ()x  = (x) = (x) 
   = (x) = (x) = x () 
 Thus   C(BG). 
 
 Thus C(BG) is a GB-algebraic pseudo substructure of BG. 
 
Example 7.24:  Let B = {0, 1} be the Boolean algebra of order 
two. A4 be the alternating subgroup of S4.  BA4 be the GB-
algebraic structure.  To find C(BA4).  Clearly 0, 1  C (BA4). 
 

 Take  = 1 + 
1 2 3 4

2 1 4 3

 
 
 

  + 
1 2 3 4

3 4 1 2

 
 
 

 + 

 

 
1 2 3 4

4 3 2 1

 
 
 

  BA4.    

 
We see   CB(A4). 
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 Let  = 
i

i
g

g   BA4 such that cont  = A4, then   (BA4). 

 
 Thus C(BA4) = {0, 1, , } we see C(BA4) is a GB-
algebraic pseudo substructure of BA4. 
 
 Thus we have proved C(BG) is only a GB-algebraic pseudo 
substructure of BG.   
 
 It is pertinent to mention here that we have no relation 
between the GB-algebraic substructure and GB-algebraic 
pseudo substructure.  For we see in case of GB-algebraic pseudo 
substructure P, we do not have a subgroup of G to be a subset of 
P.  We have of course the two element Boolean algebra to be 
always a subset of P.  Of course we may have a GB-algebraic 
substructure to be a proper subset of a GB-algebraic pseudo 
substructure and vice versa.  To this end we give some 
examples. 
 
Example 7.25:  Let G = D2.8 = {a, b | a2 = b8 = 1; bab = a} be 
the dihedral group.  B = {0, 1} be the Boolean algebra.  BG is 
the GB-algebraic structure.  Now C(BD2.8) = {0, 1, b4,  =  gi, 
(cont  = D2.8),  = 1 + b4} is a GB-algebraic pseudo 
substructure of BG. 
 
 Clearly C(BD2.8) is a GB-algebraic substructure for as it 
contains GB-algebraic substructure namely T = {0,1, b4, 1 + b4} 
 C(BD28), B = {0, 1} and H = {1, b4}.   
 
 So study of conditions for a GB-algebraic pseudo 
substructure to be also a GB-algebraic substructure is an 
interesting problem. 
 
Example 7.26:  Let G = S3  D2.7 be a group and B = {0, 1} be a 
Boolean algebra.  We see H = {(1, p1)  D2.7  G be the 
subgroup of G.  BH is a GB-algebraic substructure of BG but 
BH is not a GB-algebraic pseudo substructure of BG. 
 



122 Supermodular Lattices  
  
 
Example 7.27:   Let G = S3  A4  D2.7 be the group and B = {0, 
1} be the Boolean algebra of order two.  Let BG be the GB-
algebraic structure. 
 
 Let H = S3  {e}  {1}  G; then BH is the GB-algebraic 
substructure of BG.  For H  G is a subgroup and B = {0, 1} is 
the Boolean algebra.  If we take K = S3  {e}  D2.7 the 
subgroup of G then BK  BG is the GB algebraic substructure 
of BG. 
 
 We can take T = {e}  {e}  D2.7  G then BT is the GB-
algebraic substructure of BG. 
 
 Now having seen substructures of BG we now proceed onto 
define the notion of the BG normalized subalgebraic structure. 
 
DEFINITION 7.10:  Let G be any group and B any Boolean 
algebra.  BG the GB-algebraic structure.  Suppose T  BG be a 
proper GB-algebraic substructure of BG such that  
 
 gTg–1  T for every g  G then we call T to be a normalized 
GB-algebraic substructure of BG or T is called the normal GB-
algebraic substructure of BG. 
 
 We illustrate this by some examples. 
 
Example 7.28:  Let G = A4 be the alternating subgroup of S4.  B 
= {0, 1} be the Boolean algebra.  BG be the GB-algebraic 
structure.   
 

Take H = 
1 2 3 4 1 2 3 4

, ,
1 2 3 4 2 1 4 3

   
   
   

  

 

   
1 2 3 4 1 2 3 4

,
3 4 1 2 4 3 2 1

   
   
   

  A4.    
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B  BH is a GB-algebraic normal substructure of BG.  
Clearly g(BH)g–1  BH for every g  A4. 
 
 We prove the following important and interesting theorems. 
 
THEOREM 7.11:  Let G be a group having normal subgroups.  
B any Boolean algebra, BG the GB-algebraic structure.  If H is 
a normal subgroup of G then BH is a GB-algebraic normal 
substructure of BG. 
 
Proof:  Given G is a group and B any Boolean algebra.  BG the 
GB-algebraic structure.  Let H be a nontrivial normal subgroup 
of H.  BH is clearly a GB-algebraic substructure of BG.  We see 
for every g  G, gBHg–1  BH as gHg–1 = H.  Hence BH is a 
GB-algebraic normal substructure of BG. 
 
THEOREM 7.12:  Let G be a  simple group (i.e., G has no 
nontrivial normal subgroups.  B the Boolean algebra of order 
two then BG has no GB- normal algebraic substructure. 
 
Proof:  If G is a simple group it clearly implies G has no normal 
subgroups.  We see it T is any GB-algebraic substructure then T 
should contain a proper subset H which is a subgroup of G and 
or a proper subset B1  T where B1 is a Boolean subalgebra of 
G.  Since B is a Boolean algebra of order two we cannot find  
B1  B.  So the only condition for T to be a GB-algebraic 
substructure is we need T to contain a proper subset H which is 
a subgroup of G.   
 

Thus if T is to be a GB-algebraic normal substructure we 
need gTg–1  T this would be possible only if the subgroup H of 
G is normal in G. 
 
Example 7.29:  Let G = S3  A4 be a group B = {0, 1} be a 
Boolean algebra.  BG be the GB-algebraic structure. 
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 Let H =
1 2 3 4 1 2 3 4 1 2 3 4

, ,
1 2 3 4 1 3 4 2 1 4 2 3

       
      
       

  G  

 
be a subgroup of G.  We see BH is a GB-algebraic substructure 
of BG but BH is not a GB-algebraic normal substructure of BG. 
 
 However it view of this we give the following results. 
 
THEOREM 7.13:  Let G be a simple group.  B a Boolean 
algebra of order two.  BG the GB-algebraic structure.  BG has 
GB-algebraic substructure which is not a GB-algebraic normal 
substructure. 
 
Proof:  Without loss of generally we can assume BG is the GB-
algebraic structure in which the group G has subgroups which 
are not normal in G.  Let H be a subgroup of G which is not a 
normal subgroup of G.  We see BH is a GB-algebraic 
substructure which is clearly not a GB-algebraic normal 
substructure. 
 
THEOREM 7.14:  Let G = g | gp = 1 where G is a cyclic group 
of order p, p a prime B = {0, 1} be a Boolean algebra of order 
two we see BG, the GB-algebraic structure has no proper GB-
algebraic substructures and no proper GB-algebraic normal 
substructures. 
 
Proof:  Given G is a cyclic group of order p, p a prime and  
 B = {0, 1} be the Boolean algebra of order two.  BG is a GB-
algebraic structure.  If H is to be any proper GB-algebraic 
substructure of BG we must have in H a proper subset P in H 
such that P is a proper subgroup of G.  But G has no proper 
subgroups, hence H cannot be a GB-algebraic substructure of 
BG.   
 
 Hence the claim. 
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THEOREM 7.15:  Let G be a simple group.  B be a Boolean 
algebra of order greater than or equal to four.  Then the GB-
algebraic structure has GB-algebraic normal substructures. 
 
Proof:   Given B is a Boolean algebra of order greater than or 
equal to four.  So B has B1 = {0, 1} to be sub Boolean algebra 
of B.  Take B1G, B1G is a GB-algebraic substructure of BG and 
B1G is such that gB1Gg–1 = B1G for every g  G. 
 
 Hence the claim. 
 
 Now having seen some of the properties of GB-algebraic 
substructure we illustrate them by some examples. 
 
Example 7.30:  Let G = g | gp = 1 be a cyclic group of prime 
order p and B1 = {0, 1, a, b} be a Boolean algebra of order four.  
B1G is a GB-algebraic structure.  Take B = {0, 1}  B1 clearly 
BG is a GB-algebraic normal substructure of BG.   
 

Hence the claim. 
 
Example 7.31:  Let G = D2p = a, b / a2 = bp = 1, bab = a be the 
dihedral group of order 2p where p is a prime.  B = {0, 1} be the 
Boolean algebra of order two.  BG the GB-algebraic structure 
has GB-algebraic normal substructures. 
 
 H = {1, b, b2, …, bp–1} be normal subgroup of G = D2p so 
BH is a GB algebraic normal substructure of BG. 
 
Example 7.32:   Let Sn be a symmetric group of degree n,  
B = {0, 1} be the Boolean algebra of order two.  BSn be the GB-
algebraic structure.  BSn has GB-algebraic normal substructure.  
Take in BAn, An the normal subgroup of Sn.  BAn is a GB-
algebraic substructure of BSn.  Hence BAn is a GB algebraic 
normal substructures of BSn. 
 
THEOREM 7.16:   Let An be a alternating group (n  5 or  
n = 3).  Let B = {0, 1} be a Boolean algebra of order two.   
BAn  has no GB-algebraic normal substructures. 
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Proof:  The result follows from the fact that An is simple n  5 
or n = 3.  Hence BAn has no GB-algebraic normal substructures. 
 
Corollary:  Let A4 be the alternating group. B = {0, 1} be the 
Boolean algebra of order four. Then BA4 has GB-algebraic 
normal subsubstructures. 
 
Proof: Since A4 has H =  
 

1 2 3 4 1 2 3 4 1 2 3 4
, , ,

1 2 3 4 2 1 4 3 3 4 1 2

     
     
     

1 2 3 4

4 3 2 1

 
 
 

 

 
 to be normal subgroup of A4 we have BH to be GB-algebraic 
normal substructures of BA4.  
 

Further take K = 
1 2 3 4 1 2 3 4

, ,
1 2 3 4 1 3 4 2

   
   
   

  

 

1 2 3 4

1 4 2 3

 
 
 

  A4;  

 
BK is only GB-algebraic substructure of BA4 and is not a 

GB-algebraic normal substructure of BA4. 
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